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introduction

Karen Elliot and lan Schagen

But what does it mean? This is a question that is increasingly being asked,
in particular by policy makers, to researchers and academics when presenting
research findings. An exploration of the use of effect sizes within educational
research may provide a first step towards answering that question.

Ft was within this context that, in November 2003, an invitational seminar
was jointly organised by the Institute of Education University of London
and the National Foundation for Educational Research (NFER). The aim of
the seminar was to provide a forum for researchers, academics and policy
makers to debate the issues surrounding the calculation and interpretation of
effect sizes in educational research and, more specifically, school
effectiveness research (SER) employing, tor example, multilevel modelling.

The emphasis in the morning seminar session was on the use of effect sizes
within complex statistical methodologies with four papers presented on this
theme and two discussants providing responses. The aim of the shorter
afternoon session (with two papers and one discussant) was to place the
issue of effect sizes into a wider context within the educational landscape.
Throughout the day, the Chair highlighted the important connections
between these dual themes, providing interesting anecdotes from his own
prolific research experience and expertly steering the informed discussion
between presenters and invited delegates.

It is hoped that the seminar and this publication of the day’s proceedings
will encourage researchers and academics to use tools such as effect sizes to
facilitate the dissemination of research findings to stakeholders in the data,
such as policy makers and school and LEA staff. A range of issues relating
to this keenly debated theme have been raised, such as formulae to be used
in the effect size calculation, the use of confidence intervals, model
specification, presentation and interpretation of effect sizes. As a result, we
believe that the debate on the use of effect sizes in educational research in
the UK context has advanced and awareness has been increased, in
particular with respect to effect sizes calculated from multilevel models.
These advances, both theoretical and practical, can only further improve
understanding for all involved and provide a significant step towards
addressing the initial question of ‘But what does it mean?’.

The first chapter is written by the Chair, John Gray, University of
Cambridge, whose mntroductory comments and valuable insights set the
papers and resulting discussion in the context of educational research, and
in particular SER, over the past decades.



Chapter 2 written by Karen Elliot and Pam Sammons from the Institute of
Education University of London, provides a background to the use of effect
sizes. The notion of effect sizes is not a new concept, as a number of
different types of formulae for the calculation of effect sizes have existed for
many vyears. It is noted that, although a comprehensive number of
appropriate statistics are detailed in SER, effect sizes are generally not
routinely reported. Formulae are presented for calculating effect sizes in
studies that investigate, using multilevel modelling, naturally occurring
variation in child outcomes, with the possibilities and limitations of such a
statistic also explored.

Tan Schagen of the NFER has contributed Chapter 3. He argues that the ‘But
what does it mean?” problem has partly arisen due to the ability to present
and interpret research findings not keeping pace with advances in the
capacity and power of statistical analyses. He discusses, amongst other
ideas, the concept of dimensionless normalised coefficients and star wars
plots (essentially a graphical method for presenting these measures and their
confidence intervals).

Chapter 4 is contributed by Steve Strand from nferNelson who argues the
usefulness of effect size measures as a supplement to siatistical significance
testing. Indeed, in certain contexts outlined by Strand, he considers that
traditional significance testing is limited or insufficient. He also broadens
the discussion of effect size beyond measures of central tendency by
introducing the concept of the variance ratio to assess the magnitude of
group differences in score variance.

Peter Tymms, from the University of Durham, furthers in Chapter 5 the
exploration of effect sizes in multilevel models. A theoretical perspective is
taken in which approaches and formulae for effect size calculation, which
are intended to be of practical use, are presented for three situations:
dichotomous variables, continuous variables and units that are conceived of
as being measured on a continuous scale (random effects). He discusses the
issue of which standard deviation to employ in the calculation of an effect
size and explores the relationship between effect sizes and other statistics
commonly reported in SER studies.

Chapters 6 and 7 consist of the comments from the two discussants from the
morning session of the seminar hnked to the vse of effect sizes within
complex methodologies, relating to Chapters 2-5 of this volume. In
Chapter 6, Harvey Goldstein of the Institute of Education University of
London, provides some observations on the definition and estimation of
effect sizes. He offers some precautionary advice to consider prior fo
calculating effect sizes and also wams that, in certain cases, quoting etfect
sizes based upon regression coefficients presents a distorted view of the
underlying reality. The presentation and units of reporting are discussed as



are binary predictor and response variables. Goldstein concludes with his
thoughts on the use of utility and cost functions for comparing effects.

In Chapter 7 Trevor Knight from the DfES, in his role of discussant, gives a
comprehensive summary of the expansion of educational data in the UK
context and highlights the necessity to present results describing complex
relationships in ways that are comprehensible to the intended audience.

Robert Coe from the University of Durham has written Chapter 8. The case
for using effect size measures is presented with Coe arguing that effect size
enables uncalibrated measures to be interpreted, emphasises amounts (not
just statistical significance), draws attention to the margin of error, may help
to reduce reporting bias and allows the accumulation of knowledge within a
‘meta-analysis’. However, there are also a number of problems and
complexities associated with the calculation and interpretation of effect
sizes. Therefore, the author provides a list of recommendations to encourage
good practice in the use and reporting of effect sizes within educational
research.

A philosophical approach to the notion of effect size is presenied in Chapter
9 by Ray Godftey, Canterbury Christ Church University College. The
meaning of a pseudo-concept is explored first with examples from the
grammar of a language, then mathematics and statistics. Godfrey argues that
effect sizes, rather than providing an answer to the question *But what does
it mean?’ which has both sense and reference to the real world, offer a
statistician’s pseudo-concept,

In Chapter 10, Caroline Sharp from the NFER contributes her comments as
discussant to the afternoon session (referring to Chapters 8 and 9 in this
volume). Her stance is that of a non-statistician who, due to a close working
relationship with statisticians, is exposed to such concepts as effect size. She
has expertly synthesised the two papers, highlighting the commonalities
between the two authors’ perspectives as well as the different positions
adopted.

Paula Hammond and Michela Gnaldi, alse from the NFER, have written
Chapter 11 as a synopsis of comments received from the floor at the seminar
and subsequent remarks posted on the web discussion forum. They discuss
both the technical and non-technical issues raised, clearly reporting the
various points of view.

Finally, in Chapter 12 the editors provide a short summary about the use of
effect sizes in educational research with particular reference to complex
methodologies with some concluding comments to the ‘But what does it
mean?’ debate.

Xi
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1 Getting to grips with ‘effect sizes’: some
reflections on a personal journey

John Gray

Looking back over three decades of experience as an educational
researcher | can see that I have been grappling with the problem of
‘effect sizes’ for most of my career. For much of this time, however, the
reporting of research findings has been fairly undisciplined.

My first encounter with something comparable to the calculation of
‘effect sizes” came when 1 worked as a research assistant on Jencks’
study of Inequality (Jencks et al. 1972). In reporting tesearch
conclusions all findings were converted into a series of top fifth/bottom
fifth comparisons. Commenting on the influence of high schools on
pupils’ development, for example, Jencks concluded:

Overall, the evidence shows that differences between high schools
contribute almost nothing to the overall levels of cognitive inequaliry.
Differences between elementary schools may be somewhat more
important but evidence for this is still somewhat inconclusive. The
average effect of attending the best rather than the worst fifth of all
elementary schools is almost certainly no more than ten
{standardised) points and probably no more than five. The difference
between, say, the top and bottom halves is even less [my emphasis].

(Jencks et al., 1972, p. 93)

Seven years later, Rutter’s Fifteen Thousand Hours was hailed as
overturning the ‘pessimism’ of Jencks’ analysis. Rutter wrote:

The school results range from 71 2% better than expectation to 55.4%
below expectation — large differences indeed. The exam score, after
adjusting for VR, of the most successful school (2.38) was nearly four
times as high as that of the least successful (0.62).

(Rutter et al., 1979, p. 86)
A decade later Smith and Tombinson (1989) were reporting in similar
vein:

The results of the present study show that there are very important
differences hetween urban comprehensive schools. The level of

1



But what does it mean?

achievement is radically higher in some schools than in others. The
findings show that the same child would get a CSE Grade 3 in English
at one school but an O level grade B in English at another. There are
equally large differences in maths and in exam results in total across

all subjects.
(Smith and Tomliinson, 1989, p. 301)

On first reading, then, the British research on school effectiveness
seemed to contradict its American counterparts. Imagine my surprise,
therefore, when I applied the Jencksian metrics to the two British
analyses. The top fifth/bottom fifth estimates were virtually identical.
The British researchers had simply emphasised the full range between
the most and least effective schools in their (relatively small) samples
without reference to their locations in the underlying distributions. The
three studies were, I concluded, producing very similar estimates. The
differences lay in their interpretation.

Of course, charges of over-claiming are not limited to the field of school
effectiveness. Examples of ‘over-interpreted’ claims abound in
educational research. Take the case of the claims for pre-schooling.
American researchers have claimed that, in certain circumstances, for
every dollar spent on pre-schooling society will ultimately save seven
dollars on the costs of unemployment benefits, reduced crime, improved
health and so on. It’s a powertul claim but, unfortunately. not one that
stands up to translation across time and context.

The pre-schooling programmes that have been implemented in the
United Kingdom have mostly been very different indeed to the American
pioneers. Furthermore, the Head Start Planned Variation Study, which
formed the starting point for some of the outstandingly successful
programmes, showed that what it termed the ‘English infant school’
model was mostly notable for having few effects either way on pupils’
progress — positive or negative. A more realistic assessment of what pre-
schooling in this country can deliver, rendered in terms of effect sizes,
would have been helpful.

Within the last two years, in the debate about top-up fees, seemingly
over-inflated claims have also been made. A university graduate
apparently earns up to £400,000 more than a non-graduate over the
course of their lifetime. This conclusion may be true for some graduates
entering relatively lucrative professions, but important differences
between academic subjects and the very restricted size of the graduate
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populations, on which the estimates have been based, have both
somehow been forgotten. Again, the discipline of careful and measured
comparison seems to have been largely ignored.

A determination to undertake cross-study comparisons in terms of a
common framework does not, unfortunately, provide sufficient basis for
proceeding as I discovered to my cost when 1 attempied to undertake the
first British meta-analysis of the effects of class size. Stimulated by
Glass’s meta-analysis (Glass and Smith, 1979} but, at the same time,
irritated that it ignored nearly all the British evidence, 1 set about
identifying eleven relevant studies. With a little informed guesswork
where certain details were not provided, I thought I was in a position to
provide a reasonable estimate. Following recommended procedures for
meta-analyses, however, 1 first asked a series of related questions, one of
which was about the ‘quality’ of the research design on which the
empirical estimates were based. To my surprise [ noticed that in the
process of undertaking the review I had coded all the studies available at
that time as having ‘low quality’ research designs. End of meta-analysis!

The experience reinforced my conviction that the findings of any piece
of research are only as good as the strategies that generated them,
regardless of the frequency with which they have apparently been
replicated. In a classic article some three decades ago about the problems
of ‘accumulating evidence’ across sometimes rather disparate research
studies, Light and Smith (1971) argued that it is improbable that one will
actually find one single really well-designed study. What one needs to do
is form a clear view of what a ‘defensible’ study would look like in the
field under investigation before getting down to the business of comparing
statistics across studies. In many cases this process of screening studies
against set criteria will dramatically reduce the number of worthwhile
contributions. But rather statistical estimates based on firm ground, Light
and Smith would argue, that any number based on potentially shifting
sands. “The lesson we believe flows from these examples’, they wrote, “is
that little headway can be made by pooling the words in the conclusions of
a set of studies’ (p.43). There is really no substitute for well-designed,
implemented and analysed studies from which the statistical evidence 18
pooled. We ignore such advice at our peril.

Studies chosen for further analysis should, Light and Smith maintained,
meet at least three standards. First, all subjects in the study should have
been selected ‘from a known and precisely definable population’.
Second, a study’s dependent variables and those independent variables

3
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that are measured ‘must be measured in the same way as... those
employed in the rest of the studies’. And third, ‘the instrumentation and
quality of the experimental work in a study must be generally
comparable to that in all the rest of the studies’ (pp.448-9). These
strictures remain, in my view, as apposite today as they were then, even
though our capacity to undertake sophisticated statistical modelling has
dramatically increased since the time when they were writing.

So what is the way forward? That colleagues are ready io produce,
research and debate the conceptual and technical issues surrounding the
use and computation of ‘effect sizes’ represents an important step
forward. Effect sizes, appropriately calculated, can help to impose order
where previously indiscipline has reigned. However, as the contributions
to this symposium underline, this is not just or simply a dry “technical’
matter. Different researchers favour different procedures. There is, as
yet, no standard default model to which one can turn. Crucial choices
need to be made.

Over the next few years the development of statistical understanding
needs to go hand in hand with wider debates about how to improve the
general qualities of educational research — in terms of study design and
implementation, statistical analysis and, crucially, replication. We should
not under-estimate the implications of attempting to produce more valid
and reliable estimates of effect sizes. But we need to be cautious about
leaping to the conclusion that larger is necessarily better, Sizeable effect
sizes we can do little or nothing to modify are unlikely to contribute
much to the cause of educational improvement. Indeed, such claims
need, | would argue on the basis of experience, to be treated with a
degree of scepticism.

As educationists become more discerning in their understanding of the
routes to further improvement, the prominence given to comparatively
modest but well-founded ‘effect sizes” should increase. It is a testimony
to the increasing maturity of educational research in this country that we
have reached the point where informed discussion of the possibilities can
begin.
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2 Exploring the use of effect sizes to
evaluate the impact of different
influences on child outcomes:
possibilities and limitations

Karen Elliot and Pam Sammons

2.1 Introduction

In today’s data driven society, it is increasingly important fo consider
when presenting research findings how the various users and
stakeholders employ the data. In the context of pupil performance, data
relating to children’s educational outcomes, a literature base is emerging
linked to how schools (and also teachers, governors, parents, efc) use
such feedback (Kluger and DeNisi, 1996; Dudley, 1999; Yang ef al.,
1999; Saunders, 2000; Demie, 2003; Elliot and Sammons, 2001, 2003;
Rudd and Davies, 2002; Visscher and Coe, 2002). McCartney and
Rosenthal (2000) note that ‘likewise, when reporting research findings to
policymakers, data should be presented in a useful and understandable
format that addresses their policy concerns’ and go on to note that data
is seldom analysed in ways that are most useful to policymakers, who are
often influenced by compelling argument alone. They later remark that
‘policymakers have also turned to social science research to guide their
decision making about public expenditures for children’s program’
(p.172) with, for example, evaluation research informing policymakers
about the benefits of programs.

In reporting to the Department for Education and Skills (DIES) the
findings from the Effective Provision of Pre-school Education (EPPE)
project (Sylva et al., 1999) relating to children’s cognitive progress and
social behavioural development over the pre-school period (Sammons er
al., 2002; Sammons et al., 2003), it was clear that a comparison between
the magnitude of the impact of different predictor measures was of
particular interest for policy purposes. Therefore, within this context, we
started to explore the issue of effect sizes within educational research
and, more specifically, school effectiveness research (SER) and complex
methodologies such as multilevel modelling.
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2.2 Background to the use of effect sizes

The notion of reporting effect sizes is not a new concept. Indeed, a wide
range of different types of indices that have generically come to be called
‘effect sizes” have existed for a number of years and are most commonly
used in experimental studies where there is a control group and an
experimental group. Thompson (2002a) categorises the numerous effect
size choices into two major classes, namely standardised dilferences
when the relation is assessed via comparison of group means and
variance-accounted-for indices when the relation is assessed via the use
of correlational approaches.

Standardised differences effect sizes essentially measure the difference
in group means divided by some estimate of the standard deviation. This
estimate of the standard deviation can be, for example, the ‘pooled’
standard deviation, as suggested by Cohen (1969). He argues that the
standard deviation derived from a larger sample size (i.¢. using both the
experimental and control group) is a more stable estimate of the
population standard deviation. On the other hand, Glass (1976)
considered that the standard deviation of the control group was the best
estimate of the population mean, claiming that the intervention may have
affected the mean and the standard deviation whereas this would not be
the case for the control group. For a demonstration of standardised
differences effect sizes calculated using different ‘standardisers’, i.e.
different estimates of the standard deviation, see Olejnik and Algina
(2000,

Effect sizes linked to variance-accounted-for differences can also be
employed although generally less frequently than those related to
standardised mean differences, Due to the correlational nature of
statistical analyses, a variance-accounted-for relationship effect size
similar to #* can be calculated to provide an index of the strength of a
relationship (see Rosenthal (1994} and Thompson (2002a) for further
details). Cohen and Cohen (1983} claim that:

one of the most attractive features of MRC (Multiple Regression /
Correlation) is its automatic provision of regression coefficients,
proportion of variance, and correlation measures of various kinds.
These are measures of ‘effect size’, of the magnitude of the phenomena
being studied.

(Cohen and Cohen, 1983, pp. 6-7)
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There has been an active campaign amongst methodologists and applied
researchers encouraging authors of academic papers to not just address
the question of whether there is a (significant) relationship between two
variables but also to take into account the strength of the association and
relate this to the practical importance of the findings. Cohen and Cohen
(1983) argue that ‘the level of consciousness in many areas of just how
big things are is at a surprisingly low level. This is because concern
about the statistical significance of effects (whether they exist at all) has
tended to pre-empt attention to their magnitude” (pp. 6-7). It is important
to note that there is a continuing debate relating to the importance
attributed to statistical significance tests within research although such a
discussion on null hypothesis significance testing (NHST) is outside the
scope of this paper. However for further details on the long history of
statistical significance tests see, for example, Thompson (2002a) and
Fidler (2002) for references relating to the common misuses of NHST.

In 1994 the American Psychological Association (APA) encouraged
effect size reporting in the fourth edition of the APA Publication Manual
(APA, 1994). Despite such encouragement, this advice appeared to have
fittle impact. Therefore, drawing on recommendations for improving
statistical practices made by the Task Force on Statistical Inference
(TESD), the 2001 APA Publication Manual (APA, 2001) clearly specified
a stronger recommendation to report effect sizes:

It is almost always necessary to include some index of effect size or
strength of relationship in your Results section ... and 'failure to
report effect sizes as a defect in the design and reporting of research’

(APA, 2001, p. 25).

It appears that the APA recommendations have not been fully taken on
board by researchers, academics, journal editors, efc. as effect sizes are
clearly not being routinely reported in research. This has been a great
disappointment to many advocates of statistical reform, particularly
because the APA Publication Manual is seen as hugely influential in both
setting the standards of editorial practice and as a key step in statistical
reform and re-education within psychology (Fidler, 2002). It could be
argued though that this scenario has evolved not due to indifference to
the concept of effect sizes, rather to a lack of knowledge in the field.

Researchers do not know enough about how to compute and report
effect sizes ... neither experienced researchers nor experienced
statisticians have a good intuitive feel for the practical meaning of
common effect size estimates.

(McCartney and Rosenthal, 2000, p. 176)
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Thompson (2002a) suggests that ‘progress has been slow also because,
until recently, effect sizes computations were not widely available within
statistical packages’ (p. 67) while Coe (2002a} highlights a general lack of
training provided on effect size calculation in standard research methods
courses and the non inclusion of effect size formulae in most statistics
text books (although Olejnik and Algina (2000) reference a number of
American text books on statistical methods that include procedures for
computing effect size indices). ‘For these reasons, the researcher who 18
convinced by the wisdom of using measures of effect size and is not
afraid to confront the orthodoxy of conventional practice may find that it
is quite hard to know exactly how to do so’ (Coe, 2002a, p. 2).

The reporting of results in school effectiveness
research (SER)

Historically, researchers in the SER field have tended to present their
results without reference to the calculation of effect sizes. This may be
due to the fact that SER studies almost exclusively sought to model
naturally occurring variation in pupil outcomes rather than quantify the
impact of a specific infervention. In general, SER has traditionally
concentrated far more on measures of school or classroom
‘effectiveness’, identifying outlier institutions using residual estimates
and associated confidence limits. These value-added measures indicate
whether pupils’ relative progress in different institutions is significantly
better or poorer than expected (after control for intake).

In addition, interest has also focussed on statistics showing variance
accounted for differences. For example, the intra-school correlation
measuring the extent to which the attainment scores of children in the
same school resemble each other as compared with those from children
at different schools. The reduction in total variance (the proportion
statistically ‘explained”} by a model has aiso been used, in particular to
demenstrate how far the extent of apparent differences between schools
in pupil attainment outcomes are accounted for by information about
pupil intake (especially prior attainment but also other characteristics
such as pupil gender, socio-economic status, ethnicity/language,
percentage of pupils eligible for free school meals in a school, etc.). As
reported in the Improving Schools Effectiveness Project findings
referring to a 67 per cent of remaining variance attributable to the
schools, ‘in percentage terms, this sounds relatively modest but its impact
can be of great significance’ (Thomas et al., 2001, p. 68). Sammons and
Smees (1998) and De Fraine et af. (2003) illustrate the way such variance
accounted for statistics have been reported in SER studies.
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It is of interest to note that in terms of reporting school effects, rather
than using the percentage of variance accounted for at the school level,
a number of other methods have been suggested but to our knowledge,
not widely embraced by the SER field. For example, Jencks et al. (1972)
mtroduced the idea of a standardised difference effect size, calculating
the difference between the experimental condition and the control group
relative to the standard deviation of the criterion variable in the control
group condition and then used the square root of the variance accounted
for by schools (as quoted by Scheerens and Bosker (1997)). Bosker and
Scheerens (1989) suggested that & more interpretable effect standard
may be in terms of intervals on the scale of the output variable:

Since school effectiveness studies are non-experimental, schools could
only be grouped on an ad hoc basis in, for example, the highest
scoring 20%, the ‘middle 60 and the lowest scoring 20%. Though this
procedure would inevitably imply exploiting chance, it might still be
adopted to make the results of school effectiveness studies amenable
to the interpretation of effect sizes according to established

CONVERLION.
{Bosker and Scheerens, 1989, p. 247)

The National Institute of Child Health & Development study (NICHD,
2002), evaluated the magnitude of statistically significant childcare
effects from a multivariate linear regression model that tested if child
functioning at 4'/> years varied as a function of child-care, quantity,
quality and type. The study computed the difference between the
adjusted means for high and low group divided by the pooled standard
deviation (with continuous variables transformed to categorical ones to
obtain high/low groups).

In studies using well-known outcome measures such as GCSE results for
which practitioners, researchers and policy makers have an intuitive feel,
stmple reporting of differences in terms of GCSE grade differences has
often been thought to be sufficient. An example of this is the Forging
Links research (Sammons ef al., 1997), which explored differential
school effectiveness in a sample of inner London secondary schools,
controlling for prior attainment at age 11, with GCSE results at age 16
years as outcomnies for three consecutive cohorts. The difference between
the most and the least effective school (in terms of value added residual
estimates) was relatively large at 12 GCSE score points. This was
reported for an average student as equivalent to the difference between
gaining six GCSE Grades Bs rather than six Grade Ds. It was also
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reported that a sizeable proportion of schools (11 out of 69) had
significantly different results equivalent to +/~ 10 GCSE points. The
multilevel fixed effects estimates of hackground factors controlled for in
the model were also presented. These are estimates of the amount by
which the outcome (in this case GCSE points) changes, on average,
relative to one unit of change in the background variable when all other
measures in the model are controlied.

For example, the impact of the low income indicator (eligibility for free
school meals (FSM) versus not eligible) was —3.3 points indicating that,
on average, pupils eligible for FSM achieved approximately 3 GCSE
points less than pupils not eligible for FSM. This could be described as
the difference between three Grade Cs rather than three Grade Ds. For
gender, there was on average a 2.1 GCSE points difference between girls
and boys (in favour of girls). Therefore, it was concluded that the net
impact of eligibility for FSM on GCSE total point score was greater than
the size of the gender gap. The relative importance of gender and FSM
was directly comparable because the outcome measure (total GCSE
point score) could be interpreted in a meaningful way.

Although fixed effects estimates can be interpreted in the ways outlined
above when well-known outcomes are studied, the values can be difficul
to compare due to the different units involved. In reporting their ‘Playing
for Success’ evaluation findings, Sharp ef af., (2003) converted fixed
effects estimates into normalised coefficients which represent the
correlation between each variable and the outcome taking account of the
other variables in the model. In other words, these normalised
coefficients indicate the ‘strength’ of each relationship, allowing the
different predictors to be compared in terms of their influence on the
outcome, when all other predictors are simultaneously taken into
account. The NICHD study noted above also calculated a
complementary measure of association with structural coefficients,
reflecting ‘the relative predictive power of each predictor included in the
analysis model without adjusting for shared variance among the
predictors’ (NICHD, 2002, p. 150).

A further difficulty arises when a range of different and less well-known
outcome measures are employed. It is here that the use of effect sizes has
attractions by offering the possibility of a readily interpretable universal
indicator that can enable comparisons across different studies involving
a range of outcome measures (see Coe, 2002a for a clear discussion of

11
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2.4

this point). By indicating the relative importance of different measures in
such a way, the research knowledge base may be improved and, in turn,
research may become more accessible to other stakeholders such as
policy makers. However, it may also be that the very nature of some
complex statistical analyses which involve many predictors, lead
researchers to be cautious about identifying an effect size, recognising
that effect sizes will often depend greatly on the particular model
specification used.

Caiculating effect sizes within multilevel modeliing

The EPPE study was commissioned and funded by the Department for
Education and Employment (DfEE) now the Department for Education
and Skills (DfES). Hence the research team report findings direct to
policy makers. Stimulated by questions raised relating to children’s
cognitive progress and social behavioural development over the pre-
school period (Sammons ef al., 2002; Sammons ef al., 2003; Sammons
et al., forthcoming, a), we sought to include an effect size statistic along
with other information such as percentage of total variance explained,
intra-school correlation residual estimates of pre-school centre
effectiveness, etc, As the EPPE study is not an experimental study, rather
it explores naturally occurring variation in pre-school provision, an
educational effectiveness design was adopted, This approach sought to
ensure proper control for the influence of intake differences and testing
of process measures of interest (type of provision attended, quality
mdicators, duration of pre-school experience, etc.).

Multilevel models were employed to separate the pre-school centre level
variance 1n child outcome measures from that attributable to differences
at the individual child level, recognising the hierarchical nature of the
data (Goldstein, 1995). Of particular interest was the calculation of pre-
school centre-level residuals for a range of outcomes, which were used
to assist in the selection of pre-school centres for in-depth case study
(Siraj-Blatchford er al., 2003). The EPPE study thus adopted a mixed
methods research design linking qualitative and quantitative methodologies
to illuminate the study of pre-school processes and pedagogy (for further
discussion of methodological aspects, see Sammons ef al., forthcoming, b).

In muitilevel modelling, the *fixed’ part of the model (i.e. the fixed effect
estimate) is essentially the mean difference between two groups, after
statistically controlling for the influence of other factors. In other words,
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the estimates show the mean difference, net of the impact of other
explanatory measures specified in the model.* Thus, since ‘standardised
differences effect sizes’ fundamentally measure the difference in group
means divided by some estimate of the outcome (dependent variable)
standard deviation, the fixed effect estimate derived from the muliilevel
analysis can be divided by some estimate of the standard deviation to
calculate an effect size. The dilemma is which standard deviation: raw or
residual (adjusted) standard deviation. Employing the raw outcome
standard deviation (i.e. amount of variation in the outcome measure
before appropriate controls have been made) links to the standardised
regression coefficient formula® often calculated in multiple regression
analyses.

In multilevel analyses, residuals are calculated at each level of the model,
thus the number of possible residual standard deviations depends on the
number of levels specified. Say that pupils are specified at level 1 {(as is
the case in many educational effectiveness meodels), the pupil level
variance is the amount of variation in the outcome measure attributable
to the individual pupil after appropriate controls have been made. It is
important to note that using the level | residual standard deviation tends
to increase the effect size compared with calculations that employ a raw
standard deviation. However, such calculations are considered
appropriate becanse they explicitly model the extent and impact of
clustering in the data.

After discussion and comparison of different approaches, for categorical
dependent variables,* the effect sizes reported in EPPE were calculated
following the method outlined by Tymms ef al. (1997) in their
investigation of the attainment and progress of pupils in the first year of
school. Strand (2002) also used the same method when reporting the
strength of association between pupil mobility, attainment and progress
during key stage 1. The advantage of this approach is that it directly
employs the fixed effect estimates (i.e. predictor coefficients) based on
the multilevel analyses which takes account of the hierarchical structure
of the data.

Effect size (ES) = categorical predictor variable coefficient /
Vchild level variance

or A = —

13
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or the difference between the estimated means for the groups
defined by the dummy codings 1 and 0 expressed as a fraction
of the pupil level standard deviation, after appropriate confrols
have been made (Tymms et al., 1997, p. 112).

In order to obtain continuous predictor variable effect sizes (i.e.
coefficients from a multilevel model expressed in standard deviations as
scale units), Snijders and Bosker (1999) calculated standardised
coefficients following the standardised regression coefficient formulae
from multiple regression:

ES = continuous predictor variable coefficient™SD continuous
predictor variable / SD dependent variable

Our effect size calculation for continuous predictor variables has been
based on the basic principle adopted by Snijders and Bosker (1999) but
the raw standard deviation has been replaced by the level 1 residual
standard deviation. This ensures consistency in approach between the
effect size formulae for categorical and continuous predictor variables.
In addition, as the predictor variables have not been normalised (and thus
the standard deviation is not necessarily equal to 1), the formula
recommended (Sammons et al., 2002; Sammons ef al., 2003) has been
revised to show the standard deviation multiplied by 2.

ES = continuous predictor variable coefficient*25D continuous
predictor variable / Vchild level variance

or A = B*2sd,, where ,,=continuous predictor variable
o

e

This effect size describes the change on the outcome measure that will
be produced by a change of +/— one standard deviation on the continuous
predictor variable, standardised by the within school standard deviation
adjusted for covariates in the model.

These formulae outlined above for the calculation of effect sizes for
categorical and continuous predictor variables employed in a multilevel
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analyses have the advantage of being relatively quick to calculate and
readily understandable.

The presentation and interpretation of effect sizes

The multi-representation of results is generally considered to aid
interpretation. Therefore, it is recommended that effect sizes are
presented in tabular, graphical and textual format. Note though that
separate charts for effect sizes relating to categorical and continuous
predictor variables should be produced because the different calculations
result in the two types of effect sizes that are not directly comparable. In
terms of graphs relating to effect sizes for categorical variables, the
number of units in each category (in SER studies, generally children)
should be shown as effect sizes for some categories may only apply to a
small number of units. Whether an effect for a predictor variable is
positive or negative is also of great importance and should therefore be
specified.

As with the reporting of value-added residual estimates, the use of
confidence intervals indicating the statistical uncertainty attached to any
effect size would greatly aid interpretation. However, as Thompson
(2002a) comments the reporting of confidence intervals for effect sizes
is ‘an appealing strategy, but estimating these intervals can be very
complicated’ (p. 69). Coe (2002a) also argues for the calcuslation of
effect sizes stating that:

confidence intervals generally convey the same information as the
more widely used tests of statistical significance, but avold the need
for a usually inappropriate yesino decision about whether there is an
effect, instead allowing that effect to be quantified within a given

margin of error.
(Coe, 2002a, p. 8)

This also raises the issue of inclusion of non-significant variables in
terms of model specification as there may be cases where a non-
statistically significant variable may still improve model fit and is shown
to have an important practical impact on the outcome measure. It is
important to note that an effect size estimate can be computed regardless
of whether “significance” is obtained’ (McCartney and Rosenthal, 2000,
p. 175). Therefore, when presenting effect sizes, it is important to display
the statistical significance of each predictor variable and, in the case of
categorical predictor variables, each dummy variable.

15
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In terms of the interpretation of effect sizes, Cohen (1969) provides a
general rule (in particular for & or other effect sizes that can be converted
to ). He suggests that a standardised difference of 10.8] may be
considered large, 10.5] medium and 10.2] small. However, it has been
argued that these tentative benchmarks need to be considered with
considerable caution as there is little empirical justification for these
standards (Olejnik and Algina, 2000). Furthermore, in relation to SER
studies modelling naturally occurring variation in pupil outcomes, it is
worth noting that ‘effect sizes in naturalistic studies are typically small
because they are measured in the context of many influences’ (NICHD,
2002, p. 136) quoting from Cohen (1988). The NICHD study reports that:

even modest effects may aggregate when large numbers of children
are affected. For example, many of the most important risk behaviours
from a public health perspective have a low or moderate risk, but they
are muldtiplied in importance because of their wide prevalence and
links to problematic outcome (Jeffrey, 1989).

(NICHD, 2002, p. 158)

Thompson (2002b) notes that:

the overly rigid use of fixed benchmarks for small, medium and large
effects fails to consider the possibility that small, replicable effects
involving important outcomes can be noteworthy, or that large effects
involving trivial outcomes may not be particularly noteworthy.

(Thompson, 2002b, p. 30)

Furthermore, Gage (1984} agrees with this, defending:

the proposition that correlations or differences do not need to be large
in order to be important. In education, we are not influencing life or
death. But we are influencing dropout rates, literacy, placement in
special classes, love of learning, self-esteem and the holistic ability to
integrate many facts and concepts in a complex way. The implications
of research for practice depend rnot on the size of the effects but on the
costs and benefits of any change in practice.

(Gage, 1984, p. 90)

Furthermore, Glass, McGaw and Smith (1981) confirm that:

in education, if it could be shown that making a small and inexpensive
change would raise academic achievement by an effect size of even as
little as (.1, then this could be a very significant improvement,

16
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particularly if the improvement applied uniformly to all students, and
even more so if the effect were cumulative over time.

(Glass, McGaw and Smith, 1981, p. 104)

For a policy perspective on the sometimes beneficial impact of effect
sizes within the ‘small’ category in Cohen’s rule of thumb framework,
see a summary of comments from DIES colleagues in Chapter 10.

Consideration should also be given to the issue of appropriate levels of
control in the model when interpreting the effect size. For [urther
discussion relating to the possible inflation or underestimation of effects
when selection factors are not adequately controlled or over controlled,
see NICHD (2002). Tt is widely documented that when considering the
size of effects, it is important to take into consideration other factors such
as the context of the study, outcome(s) studied and predictors controlled
for.

Conclusion

It has been argued that ‘most social scientists seldom analyze data in
ways that are most useful to policy makers’ (McCartney and Rosenthal,
2000, p. 173). Our exploration of the possibilities and limitations in
employing effect size within multilevel analyses was stimulated by
requests from a policy audience to present the EPPE findings in a more
useful and accessible format. We employed the method outlined in the
paper for calculating and displaying effect sizes to evaluate the impact of
different influences on child outcomes. As educational researchers, as
opposed to statisticians, we are exiremely conscious that the calculation
of effect sizes within methodologies such as multilevel modelling is a
complex area. Chapters 3-5 will detail further the technical aspects of
the calculations and alternative approaches.

We tend to agree with Coe (2002b) that a more wide-spread use of effect
size measures would probably be advantageous, although Olejnik and
Algina (2000) comment that effect sizes are not without their critics who
argue whether such measures actually contribute to a better
understanding of a study’s results. Effect sizes may well prove very
useful in certain contexts and can provide an additional indicator in the
interpretation of statistical analyses, although they should not be seen as
a statistical ‘cure all’. It is important that other statistics are referenced
in SER studies such as the percentage of total variance accounted, intra-

17
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school correlations, fixed effect estimates for a set of predicior measures
with their associated standard errors and indicators of statistical
significance. From a situation where effect sizes have not been routinely
reported, it would be unfortunate if the pendulum swung to the other
extreme where effect sizes are considered as the only important or
interesting measure of policy or practical relevance in reporting
educational research.

In addition, it is vital to recognise that any effect size will only be as
good as the mode]l from which it is derived. The set of predictor
measures available for analysis will have a major impact on the estimates
obtained and therefore the effect sizes calculated. When comparing
effect sizes from a relatively simple multilevel model with those from a
more detailed complex multilevel model with better controls, differences
in effect sizes may emerge which are in fact a direct result of variations
in model specification rather than any real ditferences in impact. For
example, studies may show a larger effect size for family socio-
economic status (SES) when there is no control for other influences such
as mother’s level of qualification and the home learning environment.
When such predictors are controlled, the size of the family SES effect is
often much reduced. Although not referring to analyses using multilevel
models, Olejnik and Algina (2000) emphasise this point stating that
measures of effect sizes can be affected by the research design used.

It is also important to note that, even within the same study, a given set
of predictor measures may show different relationships with different
outcomes as certain outcome measures (e.g. reading or language) are
more sensitive to certain background influences than others. Such
differences can be of both theoretical and practical interest. Furthermore,
relationships may change over time as shown by Sammons (1995) who
conducted further analyses of the School Matiers data (Mortimore et al.,
(1988)) following children up to age 16 years. The same set of predictor
measures and outcome tests were employed at different time points and
the research showed that it was possible 1o establish whether, taken
together, background influences reduced or stayed the same in terms of
impact on attainment at different time points. In addition, changes in the
estimates {though not in terms of effect sizes) were reported for specific
characteristics. It was found that at age seven years the same set of
predictor measures accounted for relatively similar proportions of total
vartance for reading and mathematics (19.6 per cent and 18 per cent
respectively). Just under three years later, however, the same set of
predictors accounted for 20.6 per cent of the total variance in the same
children’s reading scores, but only 11.3 per cent for mathematics. In
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other words, the impact of background measures reduced significanily at
the later time point for mathematics but slightly increased for the reading
measure. Thus control for the relevant set of background measures was
especially important when interpreting reading differences for the older
age group.

A large and appropriate sample, attention to the reliability and validity
of the outcome measures used, good control for relevant prior attainment
and background measures, and the use of multilevel modelling that
capitalises on the hierarchical nature of the data, all remain essential in
educational effectiveness research focussing on pupil progress. It should
be remembered that relatively modest effect sizes may be of educational
significance if they relate to measures amenable to policy influence,
whereas larger effect sizes, if they apply to measures that are difficult to
alter, may be of less relevance. In all cases, research judgement and
additional details will be essential to aid interpretation of findings from
such analysis.

To summarise, we suggest that effect size calculations can provide
additional useful data for researchers and policy makers when
interpreted with caution in conjunction with other important statistical
measures and indicators, but should not be seen as offering the only gold
standard in reporting educational research. In conclusion, although ‘an
effect size provides a first step towards evaluating the practical
importance of a finding’ (McCartney and Rosenthal, 2000, p. 174) it
should never be reported in isolation or treated at face value without
careful consideration of context (especially the sample), the nature of the
outcome and model, background measures employed, formula used to
calculate the effect size, and its particular rationale and application for
the purpose of the research.

Endnotes

' The NICHD study is a prospective longitudinal study of more than
1000 children in America.

[

The main guide to the inclusion/exclusion of different explanatory
measures in a multilevel model is a comparison of the explanatory
measure estimate to its standard error as with a sufficiently large
random sample the ratio of a fixed parameter to its standard error
should be approximately normally distributed with mean O and
variance 1. Note that for random parameters, the likelihood ratio
statistic is often cited as a better test, indicating the ‘goodness of fit’
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of different models.

* The standardised regression coefficients in multiple regression is

calculated as the regression coefficient for the predictor variable *
sd,; / sd,.

! Note that, in multilevel models, the method of dummying variables
is used for a categorical variable. In other words, if there are n
groupings within a category with each child only ever assigned to
one group, a base group is identified and the remaining n-1 groups
are defined as dummy variables. The value of the duommy variable is
equal to | if the child belongs to the group or 0 otherwise. Those
children in the base group have a 0 assigned for all n-1 dummy
variables.
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3 Presenting the results of complex models
~ normalised coefficients, star wars plots
and other ideas

Jan Schagen

3.1

Introduction

At the end of the twentieth century the introduction of multilevel
modelling techniques and access to large and complex datasets gave
statisticians working in educational research power to carry out complex
and sophisticated analyses, which enabled us to gain important insights
into many educational processes (see Schagen & Hutchison, 2003).
However, in many ways our ability to present and explain our results has
not kept pace with our power to carry out analyses and the obscurity of
many presentations has led to a backlash. There is a movement, with
some adherents even among respected academics, which seems to be
saying: ‘No-one can understand the results of multilevel analysis, so it’s
not worth doing’ (see e.g. Jesson, 2003; Gorard, 2003). It is possible to
dub this attitude “‘Keep it simple even if it’s wrong’, but being rude about
it is not helpful and not the way to convince people that sophisticated
analyses are really worth doing.

An example which shows that simple analysis gives misleading and
incorrect results and that it takes complex and sophisticated modelling to
uncover the true relationship, is given by the debate on the effect of class
size on performance. It is frequently the case that simple analysis of
pupils’ test scores shows that those in larger classes get higher scores, on
average. A previous Chief Inspector of Schools immediately used this
kind of result to argue that it was pointless spending money on reducing
class sizes, as the data showed that pupils do better in bigger classes. Of
course, things are not as simple as that — higher attaining pupils tend to
be grouped into bigger classes, while their lower attaining colleagues
may get special treatment in smaller groups. Only more recently, with
sophisticated analysis, have researchers managed to demonstraie that
taking careful account of such effects shows that smaller classes can
improve pupils’ scores (see Blatchford ef al., 2002).
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3.2

The onus is really on the educational researchers and statistictans who
believe in the power of multilevel analysis to derive ways of presenting
its results which are valid and also accessible to intelligent but non-
technical people within the whole field of education. Gorard (2003, p. 54)
is right when he complains that too often multilevel modelling results are
published as indigestible tables of coefficients with obscure variable
names attached and with no explanation of what the coefficients mean or
of what the most important factors are in terms of their impact on the
outcome of interest.

At NFER we have been involved in multilevel analysis on a routine basis
for a number of years and have evolved several ways of presenting
results. These are not perfect and it is time that they were exposed to a
critical audience so that they can be refined and improved (or replaced).
They also raise a number of issues that should be debated within a wider
forum.

In this paper I will first discuss some possible ways in which multilevel
model outcomes may be presented, based on examples of analyses which
have been carried out.

Presenting multilevel outcomes for the fixed part
of the model

The fixed part of a multilevel model is often, though not exclusively, the
part which is of most interest to a general audience. It represents the
overall or average differences in outcomes which may be attributed to
each background variable, controlling for all the rest. The model gives us
directly the first and simplest way of presenting these impacts — their
coefficients.

3.2.1 Coefficients

The coefficient (B let us call it) relating background measure X to
outcome Y is the average change in Y associated with one unit change in
X, taking account of all the other variables in the model. If X is a binary
measure (say 0 for boys and 1 for girls), then B is relatively easy to
interpret as the average difference in outcome ¥ between girls and boys
(as ever, controlling for other variables).
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Two problems arise with this. The first is related to the units of ¥, which
may obscure the educational significance of the value of B. If these are,
say, total score points, then how do we know whether a value of B of 1.2
is important or not? We will return to this issue later. The second
problem is concemed with comparing the relative coefficients of
different variables.

Suppose B is 1.2 for the girl/boy effect and 0.12 for the efiect of
percentage known to be eligible for free school meals (FSM), then which
of these factors is the more important in terms of its impact on ¥? The
first is 10 times the second and so seems on the surface to relate to the
larger educational impact. But the coefficient of FSM is the average
change in Y per unit change in FSM. The girl/boy variable is either 0 or
1, but the FSM variable may range from 0O to 80, hence it seems possible
that its overall impact across the range might well be larger. To try to deal
with this issue we develop a new measure — the normalised coefficient.

3.2.2 Normalised coefficients

To compare the overall effects of different variables, we need measures
which are dimensionless. One such measure is obtained by scaling the
coefficients by the standard deviations of both X and ¥:

no o= 100*B*s/§, (1)

where s = standard deviation of X
S = standard deviation of ¥,

The ‘normalised coefficient” n represents the expected change in ¥
(expressed as a percentage of the standard deviation in ¥) for one
standard deviation change in X. It has no units and can be compared
directly with the normalised coefficients for other variables. Table 3.1
shows the computation of these values for four different variables, based
on analysis of national data linking pupils’ performance at KS1 in 1998
to their K82 results in 2002 (sec Schagen & Benton, 2003). The outcome
variable is average KS2 point score (standard deviation = 4.74).

The values in the final column give us a means of comparing the overall
impact of the different variables on the outcome; it seems that school-
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level FSM has a larger impact than the pupil-level variable, but that the
effect of statemented pupils 1s the largest overall.

Table 3.1 Normalised coefficients for selecied background variabies refated to KS2
average point score cutcome in 2002

Standaird Standard error Normalised

Description deviation Range Coefficient  of coefficient  coefficient
Gitl/boy 0.5 01 0411 0.007 -4.33
Eligible for FSM? 0.37 0.1 -0.436 0.010 -3.41
Statemented? 0.15 0,1 -3.593 0.030 -11.37

School FSM % 14.38 0,100 -0.036 0.002 -10.81

Figure 3.1 below is a way of displaying these normalised coefficients
and also includes the 95% confidence interval for each.

Figure 3.1 Graphical example of normalised coefiicienis

Average key stage 2 point score

Normalised coefficient (%)

-15

Girl/boy Eligible for FSM? Statemented? School FSM %

These plots can be quite good ways of seeing the relative impacts of a
range of background variables, and are sometimes informally known as
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‘star wars plots’ (look at the diagram sideways to see why). Any variable
whose coefficient is not significant at the 5% level will have a 95%
confidence interval which straddles the zero axis on this plot. 1 believe
that the inclusion of confidence intervals in the presentation of results is
vitally important to give our audiences a full understanding of the
uncertainty in our models.

3.2.3 Pseudo effect sizes

One way of conceptualising these ‘normalised coefficients’ is as
representations of the overall impact, across the whole population, of
each factor: sex, individual FSM, statemented pupils, and school-level
FSM. But the overall impact of statemented pupils is relatively small
partly because there are few of them; what about the impact of this factor
considered in terms of the expected change brought about by being
statemented rather than not statemented? For binary variables it is
straightforward to compute a ‘pseudo-effect size’:

e = 100*B/S (2)

The index ¢ therefore shows the impact of going from the ‘low’ to “high’
value of the binary variable, as a percentage of the standard deviation in
the outcome variable. This gives a simple way of comparing binary
variables, but can we find an equivalent for the others? We could just use
e for binary and n for the rest, but are we sure we would be comparing
like with like? For binary variables we are thinking about the impact of
switching between two states; non-binary variables have more states to
switch among, so what might we think of as the *average switch’ for them?

It is not immediately clear how we should approach this — there are a
number of ways, of which we shall briefly consider three. Let us begin
by considering a variable X with a Standard Normal distribution (mean
0, standard deviation 1), as in Figure 3.2. Suppose now we ‘discretise’ it,
i.e. convert it into a binary variable with all values less than zero having
a value 0 and all those above zero having a value 1. The mean values for
these two parts of the distribution are shown in the figure, and have
values of approximately -0.79 and 0.79 respectively.

The distance between these two means is therefore 1.58 and thus it might
be reasonable to use this as the factor to convert the effect of a
continuous variable into the equivalent for a binary variable,
Alternatively, we could consider the medians of the two halves of the
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distribution, i.e. the first and third quartiles of the distribution. These are
at -0.675 and 0.675 respectively, giving a total distance of 1.35.

Figure 3.2 Normal Distribution discretised into two parts
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Mean for left hand side Mean for right hand side

Finally, we might consider a slightly different approach. Suppose we
randomly pick two separate cases with different values of X — what do
we expect the difference between them to be? The expected value of the
absolute difference between two values is not entirely straightforward to
compute, but a simple alternative is the ‘root mean square’ expected
difference — the square root of the expected value of the square of the
difference. If X has standard deviation equal to I, then the expected
value of the square of the difference is 2 and the square root is V2, which
equals 1.41.

From the above, there arc three differeni values for the factor we could
apply to the effect size for non-binary variables to compare with that for
a binary variable:

e 1.58 (based on distance between ‘split means’)
e 1.35 (based on distance between “split medians’)

¢ 1.41 {(based on root mean square expected difference between two
random values).
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The final value is in between the other two, so for this reason we shall
use it to derive the formula for pseudo-effect size for non-binary
variables, which now becomes:

e = 100%B*\2s /S, (3)

Table 3.2 shows the values of pseudo-effect size for the four variables we
have been considering, and these are plotted in Figure 3.3.

Table 3.2 Pseudo-effect sizes for selected background variables related to KS2 average point
score outcome in 2002

Standard Standard error  Pseudo

Description deviation Range Coefficient  of coefficient  effect size
Girl/boy 0.5 0.1 0411 0.007 -8.67
Eligible for FSM? .37 0.1 -0.436 (.010 -9.21
Statemented? 0.15 0,1 -3.593 0.030 -75.80

School FSM % 14.38 0,100 -0.036 0.002 -15.28

The main difference to be observed (apart from a general change of scale)
is that the impact of being statemented has greatly increased relative to
the other factors. This reflects the fact that being statemented has a big
effect on those pupils, even if its overall effect is more restricted.

Figure 3.3 Graphical example of pseudo-effect sizes

Average key stage 2 point score
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3.2.4 Measures for interaction terms

The measures we have considered so far relate to what might be termed
‘main effects’, that is the direct impact of background factors on the
outcome variable. In many modelling situations we also include
interaction terms, which look at the relationship between two (or
possibly more) variables considered together. For example, we may be
interested in whether boys and girls have different relationships with
prior attainment and thus construct an interaction term in the model
which relates to this. Let us consider two inferaction terms from the KS1
to KS2 model we are considering:

SEXINT Interaction between boy/girl (binary)} factor and
average KS1 score

FSMINT Interaction between school FSM % and average KS1

score

We could treat these in the same way as the other variables, but it is not
so clear how to interpret the measures. It seems sensible to define one of
the interacting variables as in some sense ‘more basic’ than the other and
to look at the interaction coefficient relative to the main coefficient of
this variable. In the above examples, it would seem that prior attainment
is the more basic, and we are interested in how the other variables
influence the slope of the line relating prior attainment to the KS2
outcome, We therefore suggest that the “interaction pseudo effect size’ be
computed as:

—
H

100*B/K if the other variable is binary 4

100#*B*N2s/K if the other variable is not binary

Where B is the coefficient of the interaction term,
K 1s the main coefficient of the maore basic variable,
s is the standard deviation of the other variable.

In our example, the more basic variable is prior attainment, measured in
terms of KS1 average score, and the main coefficient is 0.856 (computed
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by summing coefficients of its components). Table 3.3 and Figure 3.4
show the results for these two example interaction terms.

Table 3.3 Pseudo-effect sizes for interaction terms with key stage 1 average score, related to key
stage 2 average point score outcome in 2002

Standard deviation Standard error Psendo-

Description of other variable  Coefficient of coefficient effect size
Boy/gird v. KS1 average 0.5 0.0668 0.0020 7.80

FSM v, KS1I average 14.38 0.0022 0.0002 513

Figure 3.4 Graphical example of interaction pseudo-effect sizes

Average key stage 2 point score
10 : :

Pseudo effect size (%)
——

Boy/zirl v, key stage 1 average FSM v. key stage I average

Figure 3.4 shows that both sex and school FSM % have an impact on the
link between prior attainment and KS2 outcomes, although the former
seems to be the stronger. It might be helpful to illustrate these effects
graphically, for example by means of plots such as Figures 3.5 and 3.6.

The positive coefficient of SEXINT implies that the relationship with

prior attainment is ‘steeper’ for girls than for boys, as illustrated in
Figure 3.5.
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Expected key stage 2 average score

Expected key stage 2 average score
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Figure 3.5 Average key stage 2 score versus key stage 1 for boys and girls
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The positive coefficient of FSMINT implies that the relationship with
prior attainment is ‘steeper’ for higher values of FSM, as illustrated in
Figure 3.6.

Figure 3.6 Average key stage 2 score versus key stage 1 by % eligible for FSM
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3.2.5 Adjusted coefficients

We have developed a range of indictors derived from the original
coefficients, but all expressed in dimensionless terms. These can be quite
useful to compare the relative strengths of the different effects and allow us
to relate to the concept of effect sizes and the related literature m this area.

But do the ‘consumers’ of our research really want to think in
dimensionless terms all the time? Is there not a case for saying that they
are interested in the actual impact which different factors have on pupils’
attainment? If this is true, then it makes more sense to express the results
in terms of the original units, but in comparable terms which take
account of the underlying ranges of the different factors. Let us define an
‘adjusted coefficient’:

a = B if X is binary, %

B*\2s if X is not binary.

Then a tells us the expected change in Y (in whatever units it is measured
in) for an ‘average switch’ in the values of X. Table 3.4 shows these
values for our example case study — note that the units of ¥ are in key
stage 2 point scores (6 per level).

Table 3.4 Adjusted coefficienis for selected background variables related to key stage 2

average point score outcome in 2002

Standard Standard error  Adjusted

Bescription deviation Range Coefficient  of coefficient  coefficients
(jjf],qjoy S 0'5. — " - P m—— o
Eligible for FSM? 037 0.1 -0.436 0.010 0436
Statemented? 0.15 0,1 -3.593 0.030 -3.593

School FSM % 14.38 0,100 -0.036 0.002 -0.724

Figure 3.7 shows these values; it is directly comparable to Figure 3.3,
except that the vertical axis has different units.
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Adjusted coefficient points

Figure 3.7 Graphical example of adjusted coefficienis

Average Kkey stage 2 point score

<

Girl/boy Eligible for FSM? Statemented? School FSM %

3.3 The choice of units for presenting results
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In the previous section we explored a number of possible dimensionless
quantities that might be useful for presenting and comparing the impacts
of different background factors on the outcome, and ended by
considering the possibility of using a measure with the same units as the
outcome, on the basis that this might have a more direct meaning for the
consumers of our analysis. However, to a large extent this depends on the
exact units in which the outcome is measured — some are likely to be
more meaningful than others.

-In much of this work, the outcome variable relates to the performance of

individuals in some kind of assessment. The scales which can be used to
measure this include:

e total test score

‘e standardised score (adjusted for age or otherwise)

e national curriculum levels

e point scores derived from national curriculum levels (6 points per
level)

e GCSE points based on grades (8 for A* down to 1 for G) — either
total, average or specific subject based.
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Of these, total test score is quite hard for a general audience to relate to,
without a great deal more detail about the range and difficulty of the test
and it is difficult to make impact measures expressed in these units
accessible. Standardised score points (if normalised to a mean of 100 and
standard deviation of 13) are easier to understand, as many people can
relate them to their idea of ‘IQ” and to the concept that 95% of
individuals lie in the range 70 to 130. However, without more work it is
not immediately apparent what an impact measure of, say, 3 standardised
score points might mean in educational terms.

With measures related to the nafional cwrriculum we are on stronger
ground, as there is a shared understanding within the English education
system of what is understood by a ‘level’. The point score equivalents
(6 to a level) are tied into the same system. In Table 3.4, for example, the
girl/boy difference coefficient is -0.411, expressed in the latter units.
Expressed in levels, this is -0.069, and this represents the progress that
girls are making relative to boys during KS2. It is still not entirely clear,
however, how big a difference this really is in educational terms.

One possible approach is to think in terms of nominal months of
progress. The original report, on which the national curriculum levels
were based (DES, 1987), suggested that the average pupil would
progress through a level in two years. This gives us a conceptual
vardstick, even if the current amount of progress is undoubtedly different
in practice. Let us set out the following equivalences:

llevel = 6 points = 24 ‘TGAT months’.

So the girl/boy difference of -0.411 becomes -1.64 ‘TGAT months’, and
it might be acceptable to interpret this along the lines of: ‘During KS2,
boys make about one and a half months more progress on average
across the core subjects than girls’. Table 3.5 shows the adjusted
coefficients for our example expressed on three scales: point scores,
levels and months.

So if we were asked about the impact of these factors on pupils’ progress
through KS2, we might be able to express the results in terms which
were readily accessible. For example, statemented pupils make about 14
months less progress than would have been expected; or school-level
FSM makes a difference of about three months on progress.
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Table 3.5 Adjusted coefficients for selected background variables related to KS2

average point score outcome in 2002, expressed on different scales

Ad_iusted co_efﬁcienfs

Description Points Levels Months

Girl/boy 0411 -0.068 -1.64
Eligible for FSM? -0.436 -0.073 -1.75
Statemented? -3.593 -().599 -14.37

School FSM % -0.724 -0.121 -2.90

if we decide that this metric is the right one for displaying results, can
we use it for other outcome scales? It is not clear at the moment how to
do this for GCSE outcomes, but there is a possible approach for age-
standardised scores. Suppose we have determined an ‘impact measure’
equivalent to 5 standardised score points — how does this equate to
months of progress? Table 3.6 below is an example of (part of) an age-
standardisation table, which enables age-standardised scores to be
computed for any combination of ‘raw score’ (down the side) and age in
years and completed months (across the top).

Table 3.6 Example of age-standardisation table

10.05] 10.06; 10.071 10.08] 10.09] 10.10§ 1011 11.000 11.01] 11.02{ 11.03] 11.04] 11.051 11.06

7 S0 89 &9 58 B8 87 8 87 86 B6 83 85 84 84

8 92 9L 91 90 90 89 891 89 88 88 87 87 86 86

9 9 94f 93 93 92 92 911 91 50 90 80 89 88 88
10f 96 961 95 95 94 94 93 93 92 921 9l 91 91 90
1i 98 98 97 97 96 96 96f 95 95 941 94 93 3 92
120 101% 10060 99 95 93 AL M 57 96— 05 o3 94
13] 103] 1020 1021 1027 101] 101} 100 100] 99 99| 98 98 97 97
14} 1051 10 HOH—04—F04H—163— 03 02— — 10—k 1008 100 99
15 108) 108 1071 107F 106{ 106; 103 105( 1041 104] 103 103| 103] 102
160 1118 110F 1104 1098 109] 1091 108 108] 107] 107] 106| 106] 106] 105
170 1148 1138 1137 113F 1124 1124 113 111 1119 3110) 110| 109] 1991 109
18] 317) 117 117) 116} 116l t16f  f15) 1151 115] 114] 3114| 114 113] 113
19 121 123 123} 1231 1211 12F) 1200 120 1201 119] 1190 119] 1191 118
200 132] 132] 132] 132y 131§ 13FF B33 131) 131f 1311 #1310 [3H 130{ 130
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To investigate the impact of a 5-point change in standardised scores, we
might adopt the following procedure:

1 locate a suitable age-group, for example the lowest appropriate age
for the individuals concerned (in our example we have taken
10.06}
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2 locate the cell of the table with an age-standardised score of 100 at
this age

3 move along this row (keeping the raw score constant) to find a cell
with value 95 (in our example 11.04)

4 compute the difference in ages (in our case, 10 months).

We could repeat the procedure, for example starting at 105 and ending at
100. In Table 3.6 this would also give a 10 month gap. Therefore, we
might argue that a 5-point difference in standardised scores was
approximately equivalent to a 10-month difference in ages.

There are various problems with this approach. One is that age-
standardisation tables are not always as linear in form as shown in Table
3.6 and the results obtained may vary according to the start and end
points chosen. More fundamentally, however, it makes the assumption
that changes in performance across different age groups are equivalent to
changes over time due to maturation. This is quite a strong assumption to
make, although if we are prepared to accept it this allows us to use the
above technique to generate approximate progress measures using months.

The relationship between measures computed in this way from age-
standardised scores and those derived from national curriculum scores or
levels via the “TGAT assumption’ has not been researched. If it is felt
that this is a suitable metric in which to present complex modelling
resulfs it may be worthwhile carrying out further investigations.

Summary and conclusions

In this paper [ have explored a number of possible ways of presenting the
outcomes of complex modelling processes, based on the fixed part
coefficients from a multilevel analysis. These have included:

s ‘raw’ coefficients: directly derived from the model results, in
outcome units/background unit, and not directly comparable with
each other for variables which are in different units

e normalised coefficients: dimensionless, scaled by the standard
deviation of both outcome and background variable, and directly
comparable in terms of the impact of the given factors across the
whole population
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o pseudo effect sizes: dimensionless, scaled by the outcome standard
deviation and the ‘average switch’ between values for the background
variable, and directly comparable in terms of the impact of each
factor for those whom it affects

e interaction pseudo effect sizes: dimensionless, scaled by the main
effect coefticient of the more basic factor and the ‘average switch’
between values for the other factor

o adjusted coefficients: equal to the raw coefficient for binary
variables, and scaled by the ‘average switch’ between values for non-
binary variables, and in outcome units — comparable across
background variables in terms of the impact of each factor for those
whom 1t affects.

Graphical ways of displaying these measures, including their confidence
intervals, have been demonstrated. These “star wars plots’ enable the user
10 see at a glance which factors have the largest positive or negative
effect, and whether or not they are statistically significant. Even if this
particular layout is not regarded as the best, some [orm of graphical
presentation is worth exploring for any complex model.

A further issue is the question of the units in which results could be
reported. These might be dmmensionless (i.e. similar to effect sizes) or
could be in other units which are more directly interpretable by policy-
makers and other consumers of this kind of analysis. A prime candidate
seems to be the concept of ‘months of progress’, either derived from
national curricalum levels via the *"TGAT model’ of progress, or from
age-standardised scores via the age allowance built into the
standardisation table. Personal experience has shown that this measure is
popular with policy-makers, but it remains to be seen if this is true across

“the whole range of those interested in the results of our modeling.

This paper has explored some important areas, although it cannot claim
to be the last word on any of them. Perhaps the time has come for
educational researchers and statisticians to more towards a consensus
about how we report the resulis of complex modelling so that our wider
and Iess technically-focused audience can get to grips with them.
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4 The use of effect sizes: two examples
from recent educational research
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4.1

Introduction

What is ‘effect size’? At its simplest, the effect size (d) is just a
standardised measure of the difference in the mean scores of two groups.
It is calculated as the difference between the two means divided by the
pooled standard deviation. (See Coe, 2002 for a discussion on issues
around the calculation of the ‘pooled’ standard deviation). Its principal
application to date has been in meta-analysis, which seeks to combine
and compare estimates from ditferent studies. For example we may wish
to compare gender differences on the 60-140 scale of a standardised test
score, with differences on the 9 pownt (A*-U)) scale of a GCSE
examination grade, with differences on a 0%-100% measure of
attendance at school, and with differences on a 48-240 scale on a 48
item Likert type questionnaire assessing attitudes to learning. The effect
size provides us the standardised index to make meaningful comparisons
across these different measures.

Effect sizes are not a new concept, although they only became prominent
with the rise of meta-analysis in the early 1970s. There has been a move
to make their use more widespread and the American Psychological
Association {APA) has advocated their use since 1994, For example, the
following is taken from the manuscript submission guidelines of the

Journal of Educational Psychology.

Appropriate indexes of effect size or strength of relationship should be
incorporated in the results section of the manuscript (see pp. 5, 25-26
of the APA Publication Manual). Information that allows the reader
to assess not only the (statistical) significance, but also the magnitude
of the observed effects or relationships, clarifies the importance of the

indings. ) ..
f & (www.apa.org/journals/edu/submission.html)

Despite the above, effect sizes do not appear to be routinely quoted
within the educational and psychological literature. A recent paper by
Coe (2002) has reviewed issues around the calculation, use and
interpretation of effect sizes in educational and social science research
and argued for their wider use.



4.2

The use of effect sizes

The specific aim of this paper is to illustrate, with examples from two
recent papers, the limitations of interpreting results solely on the basis of
traditional statistical significance testing, and to show how effect sizes
can improve interpretation. The two examples show traditional
significance testing is limited or insufficient for purpose where:

e sample sizes are extremely large, and consequently even ‘small’
differences may be statistically significant

s we want to estimate the relative magnitude of the effects of a range of
independent variables (e.g. in a multiple regression equation) that all

exceed conventional levels of statistical significance, for example all
are p<0.01.

A further aim of the paper is to broaden the discussion of ‘effect size’
beyond measures of central tendency. The concept of the variance ratio
will be illustrated to show how to assess the magnitude of group
differences in score variance, in the same way that ‘d” assesses the
magnitude of group differences in mean scores.

Example 1: Large sample sizes — sex differences
in cognitive abilities test scores (Strand, 2003)

4,21 The dataset

There continues to be debate on the extent, or even existence, of sex
differences in the mean level and variability of cognitive ability test
scores (Lynn, 1994, 1998; Mackintosh, 1996). However the debate
suffers from a lack of studies that:

e are based on large nationally representative population samples

¢ distinguish between educational attainment and reasoning abilities
o disaggregate separate reasoning abilities, as distinct from 1Q

e are drawn from outside the US

e analyse recent test data (i.e. administrations within the last 30 years).

In contrast to the above, Strand (2003) reports the Cognitive Abilities
Test (CAT) scores of a nationally representative UK sample of over
320,000 pupils aged 11-12 years assessed between September 2001 and
August 2003 on the recently UK standardised CAT3, which includes
tests of Verbal Reasoning (VR), Quantitative Reasoning (QR) and Non-
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Verbal Reasoning (NVR). The substantive research question is: what is
the extent (if any) of sex differences in cognitive abilities test scores?

4.2.2 Results

Table 4.1 presents for boys and guls separately the sample size, mean
and standard deviation for standard age scores on each of the three CAT
batteries and for mean CAT score (the mean of the three separate
batteries).

Table 41 Mean, standard deviation and sample size for boys and gitls on CAT3 Level
D {from Strand, 2003)
CAT score Statistic Boys Girls Significance Effect Size
of difference  (Variance Ratio)
Verhal Mean 98.4 100.6 P<.0001 0.15
SD 15.1 14.5 P<.0001 (1.09)
N 158,093 158,457
Quantitative Mean 99.4 98.9 P<.0001 0.03
SD 15.0 138 P<.0001 (1.18)
N 157,862 158,400
Non-Verbal Mean 99.7 100.2 P<.0001 0.03
SD 14.8 13.9 P<0001 (1.13)
N 157,830 158,299
Mean CAT score  Mean 99.1 99.9 P<.0001 0.05
sSD 13.5 12.7 P<.0001 (1.13)

N 156,556 157,258

Note: Fositive effect size indicates female mean greater thar male mean. VR greater than | indicates male variance greater
than female variance.
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4.2.3 Sex differences in mean scores
I believe the typical first impression on looking at the data in Table 4.1
are:

o all sex differences are highly statistically significant, p<0.0001.

When scanning a paper this may be all we take in, although the more
diligent reader may shortly thereafter note that:

e three of the four mean differences are less than one score point on a
scale with a SD of 15 (the sex differences are only 0.5, 0.6 and 0.8
standard score points on NVR, QR and mean CAT respectively).
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For many readers I suspect there may be no “dissonance’ between these
two observations. Statistics training for psychology undergraduates can
sometimes focus almost exclusively on the statistical significance of the
outcome (the p value) as a way of negotiating the complexities of sample
sizes, variances, t and { ratios etc. However given the extremely large
sample sizes in Table 4.1 almost any sex difference will be statistically
significant; p values are therefore a poor guide to the wider
psychological or educational significance of the results.

Because the standard age score (SAS) metric (mean=100, SD=15) is
widely used in educational tests, it may be that informed readers will not
over-interpret the statistical significance of the results. However, it 1s
more common that results are reported on an unfamiliar or non-standard
metric (e.g. test raw scores, % correct, factor loadings etc). Further, even
though the SAS scale may be familiar, how should we interpret the
‘moderate’ sex difference of 2.2 SAS points on the Verbal Reasoning
battery?

In short, whatever the level of statistical significance, we need to
explicitly consider the effect size (d), defined as the difference between
the mean scores for boys and girls divided by the pooled standard
deviation, to estimate the magnitude of the results. Typically, following
Cohen (1977} effect sizes smaller than 0.20 are considered very small
and treated as insignificant; effect sizes in the range 0.20-0.50 are
considered ‘small” but worth noting; 0.50--0.80 are considered medium
and above (1.80 is considered large.

The effect size for verbal reasoning is therefore very small (d = 0.15) and
the sex difference in Quantitative, Non-verbal and Mean CAT score are
clearly negligible (d = +/-0.05).

4.2.4 Sex differences in score variance

Effect size research has concentrated on measures of central tendency,
such as the mean, paying little attention to dispersion as an outcome in
its own right. For example, because the developers of modermn meta-
analytic techniques were concerned exclusively with cumulating results
of comparisons between groups in mean scores, this became the sole
concern in all subsequent meta-analytic research (Feingold, 1992).
However we can also ask how groups differ in the SD ox variance of their
scores. Is the variance of scores greater for one group than another?
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The variance ratio is formed by dividing the variance (SD squared) for
one group by the variance for the second group. In the case of sex
differences, male variance is traditionally divided by female variance so
a ratio>1 indicates the variance is greater for boys than for girls, while a
ratio<] indicates greater variability in the scores of girls. When viewed
as a descriptive statistic, Feingold (1992) suggests a variance ratio above
1.10 {or below 0.9) is probably the smallest meaningful effect.

In these terms, sex differences in variability are very close to the
threshold for verbal reasoning and exceed the threshold for both non-
verbal and quantitative reasoning (see Table 4.1). In percentages terms
boys” scores are 9% more variable than girls on verbal reasoning, 13%
more variable on non-verbal reasoning and 18% more variable on
quantitative reasoning. Figure 4.1 presents a graphical illustration of the
percentage of boys and girls within each of nine (stanine) standard age
score bands.

The differences in variability between the sexes are not huge. Sixty per
cent of the pupils scoring in the bottom 5% of the VR range, and in the
top 5% of the QR range, were boys, giving a ratio of 1.5:1. This indicates
that three of every five pupils identified with these extreme scores will
be boys. Differences in the top and bottom 5% of scores for NVR are
slightly less extreme, with around 55% boys, or a ratio of 1.25:1,
indicating that five of every nine pupils identifted at these extremes are
likely to be boys.

4.2.5 Example 1 conclusions

The conclusions with respect to methodology from this example are that:

¢ statistical significance testing is important, but not sufficient to assess
the psychological/educational significance of results with very large
samples

e measures of effect size (d) offer a direct indicator of the magnitude of
the group ‘effect’, independent of sample size, and are therefore more
useful

s measures of group differences in score variance (VR) are just as
important as differences in mean score (d).
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4.3

The substantive conclusions of the research are that:

e the lack of substantial sex differences in reasoning test scores suggests
that explanations of sex differences in public examinations results
must look beyond conceptions of “ability’

e despite the prominent media and government focus on the ‘gender
gap’, educators must be careful to avoid general conceptions of boys
as underachievers. The current study suggests that boys are slightly
more likely to be over-represented relative to girls at the high as well
as the low extremes of reasoning ability

e the greater variability in boys’ reasoning scores may explain to some
extent their greater representation within populations with Special
Educational Needs and among those who fail to achieve any GCSE or
cquivalent passes. However, boys do not appear to be over-
represented at the higher (A*) end of GCSE performance. To this
extent, it may be valid to speak of a degree of underachievement at
GCCE, particularly among more cognitively able boys.

Example 2: Establishing the relative impact of a
range of equally statistically significant factors —
does pupil mobility (changing school) affect
educational progress between age 4 and age 77

4.3.1 Background

As an example we take a study by Strand (2002). The study was
concerned to determine the impact of pupil mobility on pupils’
educational progress between age four and age seven, while controlling
for a wide range of other pupil level and school level variables. The data
was drawn from 6,300 pupils attending 56 primary schools in an inner
London LEA. Pupils’ completed baseline assessment on entry to

‘reception class at age four and were tracked until they completed

national end of key stage I (KS1) tests at age seven some three years
later. A wide range of background data was collected on the pupils, such
as their age, sex, entitlement to Free School Meals (FSM), ethnic group,
stage of fluency in English and stage of Special iducational Need
(SEN). The paper sought to determine if there were any differences in
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educational progress between ‘stable’ pupils, defined as those who had
attended the same school for the whole of the relevant phase, and
‘mobile’ pupils, defined as those who joined the school part way through
the phase, while simultancously controlling for all relevant pupil
background characteristics.

4.3.2 Resuits

Table 4.2 presents a summary of the main results. The first four columns
show the regression coefficients. The table has been simplified for clarity
by showing only statistically significant coefficienis, where the
regression coefficient is more than twice its standard error (p<0.05). We
will consider as an example the results for the end of KS1 mathematics
test. There is a significant impact on age seven mathematics score of:

& age four baseline test score

» mobility (pupils who had been in the same school for the whole three
years made more progress than pupils that joined their school part
way thirough the phase)

e sex (girls made less progress than boys)

e socio-economic disadvantage (pupils entitled to a FSM made less
progress than those not entitied)

s SEN stage (the higher the stage the slower the progress, with the
greatest negative impact for stages 33, then for stage 2 and then for
stage 1)

e EAL (greater progress made by EAL pupils who were fully fluent in
English (stage 4) than monolingual pupils)

e ethnic group (African & Caribbean pupils made less progress, and
Chinese pupils made more progress, than English, Scottish, Welsh &
Northern Irish (ESWNI) pupils)

e interactions between ethnic group and FSM, and between sex and
ethnic group (e.g. Pakistani girls made substantially less progress
than Pakistani boys)

e school level aggregates, such as the % of the cohort entitled to FSM
(less progress made in schools with a high proportion of pupils with
socio-economic disadvantage).
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Table 4.2 Multi-level regression analysis of progress during key stage 1 (taken from

Strand, 2602)
Fixed Effect Regression Coefficient Effect Size
R .é{yer.“.ige . —— a;,emée'
reading writing maths Ks1 reading writing maths KS1
score score

.C.onstant 2864 2..4.63. | 2...7.86 27(}4 | - - - o
Baseline test score 0277 0227 0313 0273 0.76 0.70 092 086
Mobile - - 1085 -0.055 - - 012 0.09
SEN stage | -0528 0387 0334 0417 0.72 0.60 .49 0.66
SEN stage 2 0737 0514 0501 -0.586 i 0.80 073 092
SEN stages 3-3 0791 0680 0595 -0.690 1.08 1.05 087 L9
Sex 0037 0047 0164 -0.027 005 0.07 024 044
Free School Meal (FSM)  -0.157  -0.140  -0.100  -0.132 0.22 0.22 015 021
EAL: complete beginner  -0.538 - - -0.255 0.74 - - 040
EAL: considerable support  -0.176 - - 0102 0.24 - - 0.16
EAL: some support - - - - - - —
EAL: fully fluent 0111 0089 0126 0.109 0.15 (.14 018 017
African - - -0.164 - - - 0.24 -
Caribbean -0.079 - 0169 -0.098 0.11 - 025 015
Chinese 0197 0254 0201 0.220 0.27 0.39 029 035
FSM * African - 0132 0092 0107 - 020 013 017
FSM * Caribbean 0.166  0.084 - 0.088 0.23 0.13 - .14
FSM * any other group 0.150 - - - 021 - - -
FSM * Indian 0.203 - - 0.149 (.28 - - 023
Sex ¥ Pakistani - - -0.172 - - - 0.25 -
School mean %FSM 0003 -0.002 0003 -0.003 0.16 0.12 018 0.19
SD of independent
variable 0730 0646 0684 (0.635 - - - -
Y variance at
school level T0% 68% 96% 1L1% - - - -

Notes: Only significant coefficients (af least p<0.03} are shown. The interaction bepween mobility and FSM way tested

and ways not significant for any subject. SD = stundurd deviation.
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The multiple regression establishes that all these variables have an
independent and statistically significant impact on progress, but what is
their relative magnitude? The regression coefficients are not themselves
directly comparable. There are four types of significant variables:

I dichotomous variables e.g. sex, entitlement to FSM, mobility. We
have also translated some nominal measures (such as ethnicity)
and ordinal measures (such as stage of English fluency 1-4 and
stage of SEN 1-5) into a series of dichotomous dummy variables

2 continuous variables (e.g. age four baseline score), which may or
may not have been ‘centred’ on the population mean

3 interaction terms, e.g., the imteraction between sex and Pakistam
heritage, or between FSM entitlement and African heritage

4 school level aggregate variables (e.g. percentage entitled to free
school meals, mean prior attainment score etc.), which again may
or may not have been ‘centred’ on the grand mean.

Effect sizes offer a means of placing these regression coefficients on a
standard index. Following Tymms et al. (1997) the effect size of a
dichotomous variable is calculated as the regression coefficient divided
by the outcome SD. For a continuous vartable, the effect size is
calculated as the regression coefficient multiplied by 2% the variables’
SD, divided by the outcome SD, so that the effect size corresponds to the
difference between predicted scores one SI» above and one SD below the
mean.

e Thus for a simple dichotomous variable such as mobility, the effect
size is simply —0.085 /0.684 = —0.12.

e For a continuous variable such as baseline test score, which was
centred around the grand mean, the standard deviation has already
been standardised to 1 and the calculation therefore reduces to (0.313
*2)/0.684 =092

e Interactions between dummy variables are also assessed as
dichotomous variables. Thus the effect size for Sex * Pakistani is
-0.172 * [ 0.684= -0.25.

e For the school aggregate measures, the general principle for
continuous variables was applied. The standard deviation at the
school level of the variable ‘% entitled to free school meals’ was 20%,
thus the effect size was (=0.003 * 2 * 20) / 0.684 = -0.18.
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"This process resulted in the effect sizes included in Table 4.2 and shown
graphically in Figare 4.2.

Figure 4.2 Effect size for pupil and school level measures on key stage 1 mathematics test
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4.3.3 Example 2 conclusions

Using effect sizes allows us to compare the different variables on a
standard index. For example the regression coefficient for the school
composition variable %FSM is very small (-0.003) compared to the
coefficient for EAL fully fluent (0.126). However, they both have the
same impact on pupil progress, with an absolute value for each effect
size of 0.18.

In relation to pupil mobility, we can conclude that while mobility has a
statistically significant impact on pupi progress in mathematics, the
magnitude of the effect is minimal, compared to the impact of other
measured pupil background and school context factors.
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4.4 Overall conclusions

The above examples show how effect sizes have aided the interpretation
of the results from these studies. Hopefully, these examples might
encourage researchers to use effect size more frequently in evaluating
their findings. However the following cautions are urged.

First, effect sizes can exceed d>(.20, even when the effect is not
statistically significant. It is therefore suggested that statistical
significance should be used as a filter and only statistically significant
variables should be evaluated for their effect size.

Second, ‘d” and ‘VR’ statistics can be directly compared to previous
studies quoting d and VR statistics, but care is needed to ensure the
comparability of the measures in such studies. For example, in
discussing sex differences in verbal ability, Hyde and Linn (1988)
observe that

‘verbal ability’ has been used as a category to include everything from
quality of speech in two year olds, to performance on the Peabody
Picture Vocabulary Test at age five vears, to essay writing by high
school students, to solutions to anagrams and analogies.

(Hyde and Linn, 1988)

It is therefore important to consider carefully the actual measures
employed in other studies.

Finally, there has been considerable debate over the interpretation of
effect sizes. Cohen (1997) considers d values of 0.2 — (.49 ‘small’, d of
0.5 - 0.79 as ‘medium’ and d of 0.8 or above as ‘large’. Rosenthal and
Rubin (1982) on the other hand have infroduced the Binomial Effect Size
Display (BESD) as a means of determining the practical significance of
an effect size and they have argued that many effect sizes that seem to be
small are actually large in terms of practical significance. For example,
an effect size of 0.4, and therefore small in relation to Cohen’s criteria,
would translate into a decrease in the death rate from 60 per cent to 40
per cent when measuring the success of a treatmnent for cancer,
something that undoubtedly has practical significance. It is therefore
important to adopt a relative rather than absolute perspective, judging the
effects in relation to the particular outcome being studied and compared
to other interventions.
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5.1

infroduction

Several different approaches allow quantitative researchers to report the
size of the effect being studied. When using multilevel models it has
become common to discuss ‘the proportion of variance accounted for’ as
well as ‘the intra-class correlation’. These two measures combined with
a direct interpretation of the coefficients can provide a clear picture. But
there has been a growing interest in the use of effect sizes as used in
experimental designs as a measure of the size of an effect and this paper
explores their possible use within muliilevel modelling.

By way of illustration the discussion is restricted to multilevel models
found in educational research in which pupils are nested within schools.
The model therefore has two levels. Before any explanatory variables are
added the equations representing the null model are:

At the pupil level: yi = By t+ & (1)

At the school level: By = By + u; (2)

These may be combined to give a single equation:
Yy = By + Ut ¢ (3)
Where:
¥, 1s the outcome measure for pupil i int school i
By is a constant which varies across schools
e, 1s the error on the pupil measures
u; is the error on the school measures

o7 18 the variance at the pupil level

o, is the variance at the school level

55



But what does it mean?

56

5.2

Effect sizes have been defined in relation to interventions in which there
is a control and an experimental group. Glass et al. (1981) defined effect
sizes as the difference between the mean scores for the experimental and
control groups expressed in Standard Deviation (SD) units. The SD was
taken to be that of the control group. More recently Hedges and Olkin
(19835, p. 78) have argued that the pooled SD should be used rather than
the SD of one particular group and that is now the more commonly
accepted definition, which will be used in this paper, although it should
be noted that Glass and Hopkins (1996, p. 290} still prefer the earlier
version. The Hedges and Olkin version will be used in this paper and the
formula is:

XE.'ep - XCom

SDpaiufur! (4)

A =

In other words the effect size is the difference between the means for the
experimental and control groups expressed as a fraction of the pooled
standard deviation.

This definition will be used to explore effect sizes in multilevel models
under three headings. The first will look at dichotomous variables, the
second at continuous variables, and the third at units that are conceived
of as heing measured on a continuous scale (random effects).

Where the variable is dichoctomous

Suppose that some schools employed a psychologist and some did not,
This may be represented by a dummy variable in the multilevel model
and a coefficient associated with the variable is generated. ldeally the
study would be an experimental one in which psychologists have been
randomly assigned to schools, but it may also be that the controls are
statistical. Ignoring any control variables for a moment the equation
becomes:

Yy = By + B+ U; ;. €; (5)

Where f3; is the dummy variable representing the presence of a
psychologist.
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Now the calculation of the effect size is simply the difference in the
means for the schools with and without psychologists (f;) divided by the
pooled standard deviation (the square root of the within group variance).
This is simply o,; the standard deviation at the pupil level and the
equation for the effect size is:

A=, (©)

This formula and others in this section were first published in Tymms er
al. (1997).

An example comes from the ESRC funded investigation (Tymms and
Merrell, 2003) in which booklets were randomly assigned to schools.
The booklets were designed to help teachers work with children who
were inattentive, impulsive and hyperactive. The results of one very
simple model! of the data are given below:

Table 5.1 Outcome measure: attitude to reading (mean=-0.045 SD=0.88)

Coefficients
Fixed o
Cons —0.062 (0.013)
Dummy to indicate booklet 0.038 (0.020)
Random | | o
Pupil 0.739 (0.008)
School 0.029 (0.003)

The coefficient associated with the random assignment of the booklet
was not statistically significant at the 5% level but it is still important to
estimate the effect size since the coefficient is the best available evidence
for the impact of the booklet. This is a quite different position from the
stance which says that there was not effect, i.e. that the proper position
is to stick to the null hypothesis, and this stance has been cogently
argued for on numerous occasions (see for example Cahan, 2000).

The effect size from the model is 0.038/V0.739 = 0.044
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The error on the effect size must be calculated by combining the errors
from both the coefficient and the SD. If it is necessary to combine the
errors then the general formula may be applied:

If the error i X is errX and X=A/B or A*B then:

errX /\érrA“;er errB| 7
X Al B8]

In this case the error on the coefficient is proportionally very much
greater than the error on the SD {53% of 1%), which can therefore be
ignored.

So the error can be set at 53%.

The effect size was 0.044 +/— 0.023

As noted above it has been assumed that the design was equivalent to an
experimental design with no controls. Where multitevel models employ
additional controls the pooled standard deviation of pupil scores o,
drops. The question then arises as to whether the standard deviation
before or after controls should be used in the calculation of the effect
size. This depends on how one conceives of the experimental parallel.
Let us suppose that the outcome measure was an attainment measures
and the major control was prior achievement from a few years earlier.
This will have resulted in a large drop in the pupil level variance of about
a half and the SD therefore falls by about 70 per cent. If the effect size
is now calculated using the reduced pupil level SD then this is parallel to
an experimental design in which pupils of similar prior scores were
selected to be part of the design and half were randomly assigning the
treatment.

This is a perfectly proper experiment to do, but of course the standard
deviation of the group will be somewhat less than i one had worked with
the full range. So although it might seem unfair to use the final standard
deviation (after confrols), as long as one defines what one is doing then
the standard deviation from the final model is appropriate.
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The data on attitude to reading and the random assignment of booklet
provides an example. When a control for the children’s starting points
was added the model became as shown in Table 5.2 below:

Table 5.2 Model with inclusion of control

Coefficients
Fixed
Cons —0.075 (0.014)
Dummy 1o indicate booklet 0.053 (0.020)
Baseline 0.091 (0.008)
Random
Pupil 0.734 (0.009)

School 0.029 (0.004)

Now the assignment of booklets is significant at the 5% level and the
effect size is:

0.053/N0.734 = 0.061

In this case the pupil level variance was hardly affected by the control
variable but the coefficient associated with the dummy variable did
change.

As an aside it is worth noting that the above discussion, concerning
which SD should be used when calculating effect sizes, raises an issue
for those engaged in meta-analyses since protocols in the standard
procedures do not involve any coding of the primary Investigations
relating to the degree to which interventions were restricied to sub-
samples of the population.

5.2.1 When the dummy variable is not a school effect

Variables often appear in multilevel models simply as controls. That is to
say, they are there to improve the model or because there is an mherent
interest in them and not because they measure school differences per se.
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For example, a treatment might have been randomly assigned within
schools but not across schools and there is an interest in the size of the
effect, but it comes from a different perspective than that described
above. Of course, it might be that the impact of the within school
experimertts varied across schools. The section below on units that form
a continunm covers calculations of such effect sizes.

If the variable has been randomly assigned within schools then the SD
used for the calculation of the effect size should not be o, but rather the
pooled SD of the experimental and control groups. Such information
does not appear in a basic multi-level model but can be obtained by
fitting separate level 1 variances for the two groups. More details can be
found in Rasbash er al. (1989, p. 18).

But although it is proper to run such models and to carry out the
calcalation to produce an unbiased estimate of the effect size if the
effect size is small the result will be almost the identical to that
produced using o,. The guestion is: how small is small? The chart below
helps to quantify the answer. It shows the results of a simulation using
10,000 cases and it suggests that if effect sizes were estimated to be 0.4
or lower then no advantage is to be had in calculating effect sizes by
more complex analyses than using the formula 8 /o,. However, if it was
greater than 0.4 then the effect size will be underestimated by an
educationally important amount. An effect size of 1 will appear to be a
little more than 10% lower than the true value.

Figure 5.1 Effect sizes calculated using ¢, and the pooled SD
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5.3 Where the measure is continuous

It may be that a measure thought to impact on schools forms a
continuous variable and this may have been randomly assigned to
schools. Varying amounts of inspection time, for example, may have
been allocated to schools. When a continuous variable is employed the
parallel from Glass er al. (1981) is a correlation and they suggest:

)

A= 2z (1-rd)° (&)

where;
r is the correlation between variables x and y

z is the ‘unit normal deviate at the pth percentile’

Extracting an effect size from a continuous variable involves considering
it as though it were a dichotomous variable and deciding where to slice
the continuous variable. If this is chosen as one 8D above and below the
mean then this simplifies according to Fitz-Gibbon and Morris (1987)
to:

ES = — =t 9)

This is equivalent to the difference between the residuals of the
standardised criterion corresponding to predictor scores one SD above
and one SD below the mean expressed as a fraction of the SD of the
residuals. This equation can be ‘seen’ in Figure 5.2, which shows the
scatterplot of two normally distributed variables each with a mean of 0
and a SD of 1. The slope of the line is equal to the correlation coefficient
(1). Vertical lines have been drawn from the mean on the x-axis and from
point one SD above and below the mean. Horizontal lines are then drawn
from the points where these lines meet the regression line to the y axis
and the effect size is the distance between the points marked r and -t
divided by the SD of the residuals from the regression:
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Figure 5.2 Graphical representation of the effect size using a

continuous variable

Ellipse holding 95% of
scatterplot

Regression line

of slope ¢

In a simple multilevel model in which the continuous predictor and
outcome variables have been normalised {mean = 0; SD = 1} the coefficient
is equivalent to 1 and the standard deviation of the pupil level scores,
after controls, is ©,. The formula for effect size becomes:

2,

o,

€

A= (10)

A slightly more complex formula is tequired if the predictor and
criterion are not z scores. Consider Figure 5.2. The slope of the line is
now f3; and the positions of the vertical lines correspond to one SD 0 qieror
to the right and left of the mean. Hence the distance between what was r
and -1 becomes 2 B* 8D, ;i ., The formula is:

28,"SD

predicior

O (11)
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Using the multilevel model in the last box the effect size for the main
control (baseline) can be calculated given the SD of the baseline
measure which is 1.

54

The effect size is:
2#0.091% 1 /V0.734
or 0.21

As in the last section the same discussion relating to the presence of
conirol variables in the model and the impact that that has on the value
of o, applies.

There are units (schools) that form a continuum

In this case a similar approach can be used and now the distance between
one standard deviation above to one standard deviation below is twice
the standard deviation at the school level and the formula is
straightforward:

A= = (12)

Again no account is taken of explanatory variables and the same
argument applies as appeared earlier,

Using the last multilevel model, the effect size for the school effect can
readily be calculated. It is:

250,029 / V0. 734
or 0.40

This is a measure of the importance of the school in children’s attitudes
o reading.
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5.5 Relationship of effect size to r* and to the intra-

class correlation

A general measure of the magnitude of a regression coefficient is the
proportion of variance ‘explained’ by its inclusion in the equation. This
is equal to the squared correlation coefficient. Hedges and Olkin (1985,
p. 77) state that for equal sized experimental and control groups the link
between the two measures (proportion of variance and effect size) is:

AZ
P =m5T 13

where:
p is the correlation coefficient

A is the effect size

This equation can be rearranged to give the formula quoted from Fitz-
Gibbon and Morris (1987) earlier and gives a clear link between the
proportion of variance ‘explained’ and effect size. This is shown
diagrammatically in Figure 5.3.

Figure 5.3 The link between the proportion of variance ‘explained’ and effect size
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It is cornmeon practice to express the size of the school effect in terms of
the proportion of variance associated with the school. This is the intra-
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Effect sizes in multilevel models

class correlation (p) and is given by:

.G
AT .

When the earlier formula expressing the effect size in terms of and is
combined with the above it gives:

A= [P (15)

N1-p

The relationship is shown in Figure 5.4.

Figure 5.4 Relationship between effect size and intra-class correlation

0.5 = - . e

Intra-class correlation

N.B. The similarity between Figures 5.3 and 5.4 arises because the rho
in the intra-class correlation formula is the proportion of variance and
this parallels r* in the earlier effect size formula.

5.6 Conclusion

This paper has set out a straightforward way of addressing the issue of
effect sizes when using multilevel models to study schools. It has
provided formulae that allow effect sizes to be calculated in standard
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deviation units and has shown how these relate to the more commonly
used measures of the sizes of effects in multilevel modelling, which are
expressed in alternative forms. The effect sizes in multilevel models have
been conceptualised in experimental ferms so that there can be a clear
understanding of what they mean.

The paper has not addressed issues associated with non-normal
distributions, non-linear relationships nor has it dealt with anything other
than very simple multilevel models.
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6 Some observations on the definition and
estimation of effect sizes

Harvey Goldstein

6.1 General considerations

Many valuable comments have been made by contributors and while
some of the key issues have been aired, I would like to suggest that prior
to considering effect sizes it is important to pay attention to the correct
specification of the statistical model being used. Thus, for standard
regression or multilevel models the assumption of Normality is typically
made and much of the literature on effect sizes, especially that which
concenirates on standardised effects, assumes Normality. A prior
transformation to Normality, for example using Normal scores, may
often be needed for both the response and predictor distributions.
Likewise, the existence of complexity in the form of interactions, or
random coefficients in a multilevel model, should be explored and where
such complexities exist a graphical presentation of effects will usually be
especially helpful.

The most common reason for wishing to use standardised effect sizes is
to compare findings from difterent studies, as in meta analyses. Where
comparisons are made between explanatory (predictor) variable
cocfficients in the same model, some care is needed since these
explanatory variables and the coefficient estimates may be highly
correlated. In any case it is good practice to estimate a confidence
interval for the difference between two such standardised coefficients, or
carry out a test of significance.

A particular important case is where the relationship between a response
and a predictor variable is non-linear so that a simple effect size in the
form of a standardised regression coefficient is unavailable. In a recent
study of class size effects (Blatchford et al., 2002) not only was the
relationship between test score (adjusted for prior attainment) and class
size non-linear, there were also interactions between this relationship
and level of prior attainment. Figure 6.1 presents these relationships in a
way that shows clearly what is occurring. It would be difficult to find a
simple alternative method of presentation using effect size estimates.
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Figure 6.1 Reception literacy by class size for three baseline groups
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The response is a literacy test score taken at the end of reception year and
adjusted for the prior baseline test score and other factors; the line with
the steepest slope for class sizes below about 23 is that for the lowest
achieving group at entry to recepiion class. The non-linearities are
important since they illustrate the changing relationship for this group
for class sizes over about 27. The model was fitted using cubic
regression splines within a multilevel model and is an interesting
example of where traditional methods of fitting linear relationships and
quoting effect sizes based upon the resulting regression coefficients
would have presented a distorted view of the underlying reality.

In the remainder of this contribution I will comment on the following
specific issues. The first is the question of the appropriate units in which
to present results and how to form a standardised coefficient. The second
is how one might deal with binary (or ordered) predictor and response
variables and finally I will make some comments on the use of utility or
cost functions for comparing ‘effects’.

Presentation and units of reporting

In a simple linear regression model one can form a standardised
regression coefficient which will denote the estimated change in
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standard deviation units of the response for a change in 1 standard
deviation of the predictor. Whether or not one chooses the response
distribution before or after fitting the predictor variable (i.e. based on the
residual variance) will depend on purpose. For example, if the model 1s
a multilevel one and includes school class as a random factor and the
predictor of interest is measured at the class level, say class size, then the
within class level 1 residual variance would seem to be the appropriate
one to use, since this is more likely to be comparable across studies since
these may have very different percentages of relative between-classroom
variance. On the other hand, if the predictor of interest is measured at the
individual level then the overall population standard deviation would
seem to be more appropriate for purposes of reporting and comparing
effects. In a randomised controlled trial where treatments are
administered to individuals the use of the control group S.D. reflects this,
since that is the naturally occurring S.D. in the population.

The ideal situation is where there is a ‘natural’ reporting unit. In
education, with young children this might be years of progress
associated with the response measure that is reporting an effect in terms
of the average years of progress for a unit change in the standardised
predictor. Blatchford er al., (2002) use this, but remark that the
conversion of score scales to years of progress requires data from
longitudinal studies that are usuvally not available. The age
standardisations typically supplied by test publishers are i fact a
mixture of ‘cross sectional’ and ‘longitudinal® adjustments that are not
suitable {see Goldstein and Fogelman, 1974 for a further discussion).
Another possibility is to choose a standard metric against which other
effects will be calibrated. Thus, we might choose the girl-boy difference,
suitably contextualised for age and response type, and present other
effects as multiples of this.

Binary variables

The first case is where we have a binary response variable, say a pass/fail
indicator, rather than a continuous score. A standard statistical procedure
is to assume an underlying continuous distribution which has a threshold
above which the indicator (say an exam pass) is triggered. A probit
analysis can be carried out where the underlying continuous distribution
is assumed to be a standard Normal one and this then allows direct
calculation of a standardised regression coefficient. Where the response
is ordered, for example a 5-point scale, then a similar procedure can be
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implemented. For comparability purposes of reporting effect sizes and
being able to compare with continuous response variable analyses, such
analyses should be carried out in preference to the more common logit
modelling — although the general statistical inferences concerning
significance etc. will generally be hittle changed.

The second case is the one discussed by Schagen (in Chapter 3) where
we have a binary predictor. In such cases, we need to distinguish
between cases where it is reasonable fo assume an underlying continuum
such as, say, social status and where there is no such concept as in the
case of gender or type of school. Where there is no reasonable
assumption of an underlying continuum it just does not seem appropriate
to attempt to define an effect size that is comparable to one defined for a
continitous variable and I do not see that any amount of mathematical
manipulation is appropriate in such cases. Where we can assume an
underlying continuum then the following simple approach suggests
itself.

Suppose the predictor is social class measured as manual/non-manual
and we assume an underlying social status confinuum. As a simple
illustration, suppose that the proportion manual is 0.5 and suppose also
that in a simple analysis, using a standardised (or Normalised) response,
for the binary social class variable the social class difference is estimated
to be 0.2 units — i.e. this is the coefficient of the dummy variable for
social class. Using the probit idea described above we suppose that there
is an underlying standard Normal distribution where the mean of zero in
this case corresponds to the cut-off between manuval and non-manual,
since the proportion of manual is 0.5. If we assume that those with a
manual social class are randomly sampled from the underlying
distribution then their average value from this distribution is simply the
average for the Normal distribution truncated above at zero, which is
about —0.8. Likewise the non-manuals will have an average on the
underlying distribution of about 0.8,

Thus, the difference on the underlying normal is 1.6 units, rather than the
1.0 units implied by using a standard dummy variable coding. Therefore,
if we divide the estimate above of 0.2 by 1.6 to give 0.13 we have an
estimate for the coefficient that we would have if we actually used a
direct measure of the underlying social status having a standard Normal
distribution; this will be the effect size. It is possible to extend this idea
to ordered categories, but it does rest upon the assumption that, given the
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category, e.g. manual, there is no association between the underlying
continuous distribution values and any other predictor vartables, and in
general we might not expect this to be true.

A more sophisticated approach to this problem will take account of this
possibility and Gibbs sampling (Albert and Chibb, 1993) can be used for
the estimation. Research on this, with a view to incorporating it into
MLwiN (see Browne, 2003) is currently being pursued.

Utilities and costs

Instead of attempting to provide single number sununary comparisons
for different variables that can be compared across studies, 1t might be
better to give the user responsibility for deciding how to make such
comparisons. Suppose we have two predictors, a measure of special
educational need (yes/mo) and gender. We can ask the user of our
analysis to place relative costs on having a gender difference and having
a difference between our special edocational needs groups. Such costs
might be thought of in terms of the social utility of eliminating such
differences or perhaps the resource costs of doing so, or some
combination. Suppose that the estimated difference between categories
in our model is the same for both variables but the utility for special
needs is thought to be twice that for gender. This would mmply that
eliminating the category of children with special needs will result in a
greater (twice) social ‘gain’ than eliminating the gender difference, and
this might then guide policy.

Of course, this is only a crude example and all kinds of objections can
be raised, but allowing considerations of utility and cost to enter at the
stage of presenting results, as a product of discussions with users, does
seem to have something to recommend it and avoids at least some of the
drawbacks associated with presenting users with single estimates of
effect sizes.

71



But what does it mean?

References

ALBERT, I.H. and CHIB, S. (1993). ‘Bayesian analysis of binary and
polychotomous response data’, Journal of the American Siatistical
Association, 88, 66979,

BLATCHFORD, P, GOLDSTEIN, H., MARTIN, C. and BROWNE, W.
(2002). ‘A study of class size effects in English school reception year
classes’, British Educational Research Journal, 28, 2, 169-85.

BROWNE, W.J. (2003). MCMC Estimation in MLwiN, London:
University of London, Institate of Education.

GOLDSTEIN, H. and FOGELMAN, K. (1974). *Age standardisation
and seasonal effects in mental testing’, British Journal of Mathematical
and Statistical Psychology, 44, 10915,

72



7 Notes as discussant
Trevor Knight

7.1 Background

The 1983 Statistical Bulletin on School Standards and Spending and its
1984 follow-up (13/84) were the first time the then Department of
Education and Science (DES) had published for LEAs quantitative
measures and consequent conclusions on the relationships between
performance and background factors, The analyses contained in the
Bulletins were simple stepwise OLS regressions on LEA-level data and
represented the reasonable maximum that could be done with national
data at the time.

But it was recognised even then that the “ecological fallacy’ was present,
and that as a consequence the amount of variation explained at the LEA-
level was likely to be hiding significant facts about the variation in pupil
progress within and between schools. This feature led to Murray Aitkin,
Nick Longford and Harvey Goldstein driving forward the theory of
multifevel modelling using TLEA individual pupil data. This led to
seminal papers on multilevel modelling — applied locally worldwide.
There began to be growing understanding of the practical importance of
the multilevel approach for developing interpretations and educational
constructs. Academic communities were increasingly using such
powerful methods but no national centrally-available datasets were yet
available on which to use them.

The Task Group on Assessment and Testing (TGAT) and the introduction
of the National Curriculum imposed a system of testing, initially for key
stage 1, which by 1996 had extended robust national data to key stage 2
and key stage 3 (though the tests themselves have been subject to regular
change). Individual pupil data for key stage 2 and key stage 3 was
collected by SCAA (School Curriculum and Assessment Authority, now
Qualifications and Curriculum Authority) from the outset and shared
with the Department. The Department had responsibility for collecting
information on key stage 1 from LEAs.

From 1998, once testing had settled down and become accepted, the
construction of data collection mechanisms which facilitated matching
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pupil test results across time began. SCAA commissioned Carol
Fitz-Gibbon from Durham University to consider how ‘value-added’
measures (based on matched pupil test records, controlling for prior
attainment) should develop (Fitzgibbon, 1997). This report was an
important landmark in this area. In the interim, following the first
schools” White Paper in 1997 of the Labour government, the use of
school-level ‘benchmarks’ based on free school meal (FSM) eligibility
rates collected by the Department’s Annual Schools” Census (ASC) was
introduced, and these continue to be published by DIES/QCA/Ofsted in
the Autumn Package and used by Ofsied in Performance and Assessment
reports (PANDAS).

Performance Tables were instituted in the early 1990s, based on raw
results (colloquially known outside the DfES as ‘league tables’), The
development of national matched pupil test records allowed
Performance Tables to address the value-added issue, and consequently
a period of pilots and testing led to national roll-outs of compulsory
age value-added (VA) measures, including a key stage 2-GCSE/GNVQ
pilot in 2003.

The DIES, after extensive consultation and discussion, constructed
school VA measures for Performance Tables on the basis of comparing
mdividual pupil outcomes against that of the ‘median pupil’ having
broadly the same aggregate level of prior attainment. For a variety of
practical and policy considerations, a method of VA construction was
adopted that was believed to be both open to checking by schools and to
be more readily understandable by parents. Construction of measures
using a multi-level modelling approach was not then recommended as a
feasible option for Performance Tables.

No background information on individual pupils (other than gender) that
could potentially have played a part in the VA measures for Performance
Tables was available to the Department at that stage. But planning had
begun in the late 1990s on the development of a *Common Basic Data
Set’ (CBDS) that would govern the information that the DfES and its
education partners believed every school and LEA should have
commonly available as a minimum fo manage their responsibilities.

The first part of the CBDS, the Pupil Level Annual Schools” Census
(PLASC), was piloted in 2001 and introduced in full the following year.
This contains a number of variables on pupil background — including
whether pupils are ‘known to be eligible for a free school meal (FSM)’,
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their minority ethnic ‘group’ and whether they have a statement of
educational need (SEN). Pupil home address postcode is also collected,
which would allow in time the use on GIS-based area information fo
mdicate pupils’ socio-economic circumstances from other sources.

National pupil-matched performance data is Hnked to individual pupil
PLASC returns through the Unique Pupil Number (UPN) as part of
DfES’ management information system development. This is part of the
Key to Success initiative with LEAs to improve data collection and
transfer arrangements, data interpretation and checking. Pupils’ PLASC
data linked to their test and exam performance is the basis of the
Department’s National Pupil Database (NPD) which will be a major
repository, maintained under comprehensive confidentiality conditions,
for the development of pupil, school and LEA performance measures.

One of the first fruits of PLASC/NPD was the launch of an improved
2003 Autumn Package in the form of the Pupil Achievement Tracker
(PAT). This was sent to all maintained schools allowing them to input
details of their own pupils and their prior attainments and exemplify,
using national matched pupil performances expressed in the shape of
‘transition matrices’, possible levels of performance outcomes. All
schools had access to the same information to help them make their
contributions to the national literacy and numeracy strategies and targets.

For transparency and ease of interpretation, the transition matrices are
based only on prior attainments. They do not contain contextual data,
and are not constructed around any educational or statistical model.
Furthermore, no information on any uncertainty intervals that will
typically apply to estimates of future pupil and school performance is
provided.

But by 2002 there was general acknowledgement that the improvements
now in place on pupil data availability, allied to the generally accepted
view that multilevel modelling offered a powerful technical resource,
implied that more refined bases of VA measures could be introduced. A
lot of this work has been pioneered by the academic community — The
University of London Institute of Education (ULIE) being prominent —
but others in higher education working with LEAs are also strongly
involved. The Fischer Family Trust (FFT) for example has been
providing LEAs with a ‘contextualised VA’ service, though not yet using
multi-level systems, and the results are currently used by DfES in its
‘Underperforming Schools’ project.
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7.2

Many have noted that there are at least two sets of school VA measures
in the public domain which use different analytical constructs and
alternative measures. It has been generally accepted that alternative VA
formulations can be used in a complementary way but that the benefits
each would bring to discussion, evaluation and policy had to be weighed
in the balance.

There is now widespread feeling amongst schools and LEAs (and the
academic community) that some contextual measures have a stafistically
significant and educationally justified impact on the explanation of
variation in outcomes at all key stages. Schools and LLEAs (and the
DfES) are being judged on pupil performance measures, especially the
Department’s Public Service Agreement (PSA) targets, and that the most
appropriate and relevant methods and measures must be seen to being
used. The Royal Statistical Society (RSS) Working Party on Performance
Indicators has recently issued cogent advice on how national data should
be collected, described and used by the Government to advance the
public’s understanding of informatjon and data analysis.

With this in mind, the DfES set up the Value Added Methedology
Advisory Group (VAMAG) as one means of gleaning the advice of key
analytical practitioners to help its VA agenda. The group is being
informed by the ‘intelligent accountability’ framework, consonant with
the revised OFSTED inspection system. Ministers had expressed their
wish to the see improved performance measures widely used.

Data analysis and presentation issues

The DIES publishes a wide range of statistical information, some of
which — Performance Tables and the Autumn Package — explicitly relate
to the levels of pupil progress and to the variation in pupil performance
conditional on prior attainment. Statistical Bulletins are published which
explore, compare and contrast the progress made by pupils controlling
for their and their schools’ characteristics using information from
PLASC. These analyses are population based and, generally, do not
contain impact statements or uncertainty profiles.

However, Performance Tables have a section which explams the concept
of ‘uncertainty’ in comparing school value added measures and a
technical annex gives guidance to readers on how to interpret those
measures nationally and locally. The Tables do not indicate ‘confidence
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mtervals’ for individual schools: readers do that for themselves in the
light of the guidance provided.

Ministers are clear that the Department should use the best available
analytical methods and maximise use of available data. There is an
acceptance that the sophistication of performance judgements possible
has now increased (for the reasons given above) and that careful use of
more skilled analysis will enhance evidence-informed policy-making.

However, the advance of the analytical tool-set to improve the range and
robustness of performance judgements requires a considerable increase
in the understanding and awareness of how these judgements have been
created, how they should be interpreted, and how they can be utilised for
policy creation and maintenance. There are competing siren calls on
methods and methodology each of which will yield different answers in
a high stakes environment.

The Department accepts that it now needs to do far more to present
comprehensive analyses that describe complex and complicated
performance and context relationships in ways that command respect,
understanding and acceptance. This requires a large training and
development programme from those not conversant with complex data
methods throughout and bevond the education sphere.

The concept of effect or impact assessments, and their presentation, is
pivotal in developing & clearer appreciation of which factors appear
important in developing and evaluating policy, and to which pupil and
other groups those effects are or are not important. The presentation of
this information, whether by chart, graph or table, is a crucial
ingredient in building public understanding of what the Government is
doing, how it proposes to do it, and the costs (financial and other) of
implementation.

The use of more sophisticated and appropriate methods and the
development of describing where significant associations do, or do not,
exist, must then be followed by a large suite of published assessments for
academic and public review, Presenting significant differences, their
relative importance, and which groups are affected, then allows ‘data
mining’ to explore relationships. This can lead to the improvement of
educational theory, to hypothecation of potential change to performance
given changed conditions, and hence to sets of policy initiatives which
can be scaled and ordered in a quantitative way.
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Some evaluations commissioned by the Department are already using
sophisticated techniques and effect assessments. These will be widened
as data and circumstance permits. But it is essential that the practical
importance and understanding of the relative importance of factors
significant to performance (of pupil and school) is also widened and
becomes inculcated within the Department’s work.

VAMAG’s work is being advanced with the ‘effects’ issues on-board.
There will be publication by the Department of more analyses which put
pupil and school performance and variation robustly in the wider
context. The Department has made commitment to the use of impact
assessments in what it publishes, and in what it uses to inform policy
development.

Consequently, it is vital that the educational community makes available
the appropriate analytical theory supported by practical examples in
ways which are accessible to the Department. These should be
supplemented by ways in which the data could be examined further o
highlight potential areas for more analysis relevant to current or potential
policy concerns.

7.3 Conclusions

o The extent of disaggregated education data has expanded
considerably, and is continuing to expand, as datasets are linked
through postcodes and other keys.

e There is now a widely available and accepted bedrock of appropriate
statistical theory to employ on the widening volumes of
disaggregated data, informing the web of educational relationships.

e There are countless analytical examples of sound analytical theory
and practice on pupils and school performance matched with high
quality presentation on which the Department can draw.

e As it develops its ‘intelligent accountability’ concepts to assist higher
quality policy making, the Department will help schools and LEAs
with better information for reflection, improvement and target setting.

o This assistance includes the use and dispersion of more sophisticated
analytical methods and creates within the Department a challenge to
policy making and to the central Government’s relationships with the
education world.
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e The Department is committed to working with pariners 1o use more
robust methods where these have relevance, are appropriate, and are
intelligible to the audiences.

e This implies greater awareness of the importance of statistical methods,
and the cornerstone that ‘effect size’ analysis has in that process.

o This also implies that there is recognition of a large ‘educational’

training issue surrounding the use of more rigorous and complex

analyses, especially as datasets exiend over time.
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8 Issues arising from the use of effect sizes
in analysing and reporting research

Robert Coe
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8.1

Introduction

This paper consists of three parts. The first argues the case for the use of
effect size measures in analysing and reporting quantified data in
educational research; the second explores some of the problems and
complexities of doing just this; finally, the third part attempts to draw
together some recommendations for appropriate use of effect sizes.

Effect size is simply a way of quantifying the size of the difference
between two groups. It is easy to calculate, readily understood and can
be applied to any measured outcome in education or social science. It is
particularly valuable for quantifying the effectiveness of a particular
intervention, relative to some comparison. it allows us to move beyond
the simplistic, ‘does it work or not?’ to the far more sophisticated, ‘how
well does it work in a range of contexts?” Moreover, by placing the
emphasis on the most important aspect of an intervention — the size of
the effect — rather than its statistical significance {which conflates effect
size and sample size), it promotes a more scientific approach to the
accumulation of knowledge. For these reasons, effect size is an
important tool in reporting and interpreting effectiveness.

The routine use of etfect sizes, however, has generally been limited to
meta-analysis, for combining and comparing estimates from different
studies, and is all too rare in original reports of educational research
(Keselman et al., 1998). This is despite the fact that measures of effect
size have been available for at least 60 years (Huberty, 2002), and the
American Psychological Association has been officially encouraging
authors to report effect sizes since 1994, but with limited success

-(Wilkinson ef al., 1999). Formulae for the calculation of effect sizes do

not appear in most statistics text books (other than those devoted to
meta-analysis), are not featured in many statistics computer packages
and are seldom taught in standard research methods courses. Where
effect size is mentioned it is often as something of a footnote to a larger
presentation of statistical significance testing. For these reasons it is well
worth rehearsing the arguments for the use of effect size measures in
reporting quantitative research.
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Before launching into the argument, it is appropriate to clarify what is
meant by effect size in this context. Although there are a number of
alternative measures (outlined in this chapter), the argument here will
focus mainly on the standardised mean difference, i.e. the difference
between the mean values for {wo groups, divided by an estimate of the
population standard deviation. It will also be assumed that, alongside any
estimate of effect size, some indication of its margin of error, for
example a 95% confidence interval, will be provided. Coe (2002)
provides an introduction to these concepts.

In arguing the case for effect size, one should not lose sight of the fact
that its use and interpretation can be problematic. In the heat of the
argument for preferring an emphasis on effect size to the traditional
hypothesis test, the limitations of the former are sometimes overlooked.
It is important that these limitations should be made explicit and
discussed if we are not to merely replace one set of unsatisfactory
procedures with another. A starting point for this discussion forms the
second part of this chapter, after the case for using effect size has been
outlined.

The case for using effect size measures

Much of this argument will be familiar and has been presented many
times, often in the context of criticisms of the use of statistical
significance testing {e.g. Cohen 1969; Kirk, 1996, 2001; Harlow et al.,
1997; Thompson, 1999, 2002a; Wilkinson et al., 1999). Here the
argument focuses on the advantages of using effect size as an alternative,
or supplement, to the use of hypothesis tests, drawing where appropriate
on arguments about the deficiencies of exclusive use of the latter. Five
broad arguments are presented, some of which contain multiple strands.

8.2.1 Effect size enables uncalibrated measures to be
interpreted

Perhaps the most obvious motivation for the use of effect size is that it

allows meaning to be given to a difference recorded by an unfamiliar

instrument and reported on an unknown scale. By using the familiar

concept of the standard deviation, it allows the difference to be calibrated

in terms of the amount of variation within the overall population.

To illustrate this, consider a hypothetical example of a questionnaire on
teachers’ perceptions of their training needs. An overall scale has been
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created from the average of seven items in the questionnaire, each coded
on a four-point Likert scale. Data from two comparisons are presented in
Table 8.1.

Table 8.1 Comparison by age and sex of perceptions of training needs

Age 20-40 Age 41-65 Female Male
Mean N SD Mean N SD Mean N SD Mean N SD
208 389 087 2609 345 0.93 264 451 1.05 244 283 1.11
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The table shows that younger teachers on average perceived a stronger
need for training than their older colleagues and that females felt more
need for training than males. Both differences are statistically significant
(p<0.05), and in reporting such data it would be common o se¢ no
further comment on the size of the two differences. However, it is clear
from the numbers that the difference between the two age groups is
considerably bigger than that between the sexes. In fact, expressed as a
fraction of the standard deviation of scores on the ‘perception of training
need’ scale, the effect size of the former is (0,98, while that of the latter
is 0.19 — about one fifth of the size. The use of effect size to calibrate
these comparisons not only highlights their relative sizes, but also
cnables each to be interpreted. Here, for example, although there
certainly is a difference between males and females, it is quite small. The
difference between older and younger teachers, on the other hand, is
substantial. Further discussion of the interpretation of effect sizes can be
found in Coe (2002).

8.2.2 Efiect size emphasises amounts, not just statistical
significance

The arguments under this heading essentially relate to identified

criticisms of the use of significance tests that are at least to some extent

mitigated by use of effect size as an alternative. The argament comes in

three parts.

Beyond dichoetomies

The dichotomous outcome of a significance test is often inappropriate in
drawing inferences from data. In most research contexts (as opposed,
say, to quality control) it is not appropriate to have to make an all or
nothing decision about whether to accept or reject a particular null
hypothesis. It is absurd to have to conclude one thing if the result of an
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experiment gives p = 0.051 and the exact opposite if it were 0.049.
(Oakes, 1986). The true/false dichotomy can easily be transcended by
the use of an effect size estimate with a confidence interval.

Amount is important

One of the most telling criticisms of the use of significance tests is that
they leave out the most important information: the size of the effect. It
is not enough to know, as Tukey (1969) has said, ‘if you pull on it, it gets
longer’. Scientific advance requires an understanding of ‘how much’.
Significance tests do not tell us how big the difference was, or how
strongly related two variables were. Instead, they say more about how
large our sample was (Thompson, 1992). A great deal more information
can be extracted from an experiment if the focus is on parameter
estimation, rather than hypothesis testing {Simon, 1974).

An illustration of the importance of amounts rather than just directions
can be seen in Figure 8.1, which shows three comparisons from three
hypothetical independent experiments, illustrated graphically as effect
size estimates and their confidence intervals. In (a), a significance test
would show the effect to be not significant, while for (b) and (c¢) it would
be statistically significant. However, the presentation of effect sizes
shows clearly that the results of (a) and (b) are actually the same;
differences in sample size or design prevent the former reaching
statistical significance. On the other hand. the result in (¢} is quite
different and not consistent with the other two.

Figure 8.1 The failure of significance tests to quantify the size of a difference

(@) (b) (c)
‘not significant’ ‘significant’ ‘significant’
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The meaning of significance

There is room for debate about precisely how the ‘significance’ of a
result should be defined. Issues such as its policy or theoretical
implications, costs, benefits and feasibility, together with the strength of
evidence underpinning it, should probably all be considered (Thompson,
2002b; Leech and Onwuegbuzie, 2003). However, what is clear is that
significance tests are widely presented and interpreted as conveying the
size of the effect and its replicability (Oakes, 1986}, but that in fact they
do neither. Certainly, for results with practical or policy applications, the
effect size is arguably a better index of significance than a significance
test.

8.2.3 Effect size draws attention to the margin of error

Statistical power

By considering the power of significance tests reported in social science
journals, Cohen and others (see Cohen, 1990) have shown that the
majority of studies published have a less than even chance of rejecting
the null hypothesis, even where there is in fact a medium-sized effect. In
other words, failure to reject the null hypothesis typically tells you
absolutely nothing, other than that your sample was probably too small.
What is extraordinary is that in the time since Cohen (1969) originaily
published this finding, the situation seems not to have improved (Cohen,
1990), suggesting that concern with statistical power is not paramount in
designing research (but see below). The use of an effect size and
confidence interval, represented as in Figure 8.1, makes the margin of
error around a result very apparent and it is hard to imagine that such
inappropriate use of significance tests could have continued had this kind
of representation been more widespread.

It may also be noted here that in order to calculate the likely power of a
comparison one has to make some kind of assamption about the size of
the difference in a population. Such calculation is greatly simplified if
the difference is expressed in terms of effect size, and indeed this was
Cohen’s (1969) original reason for introducing the concept. One could
therefore say that as well as drawing attention to the issue of power, the
use of effect sizes is actually a requirement tor its calculation.

Synthesis rather than disagreement
One interesting comment on the adverse effect of significance testing is
that a good many disagreements in social science are simply due to
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sampling variation (Hunter and Schmidt, 1996). Many apparently
different findings are in fact perfectly consistent with each other, within
the margins of statistical error. Significance testing greatly exaggerates
these differences, stressing individual results at the expense of an
integrated overview of all the available evidence, together with ifs
associated uncertainty. It could therefore be argued that the use of effect
sizes might help to reduce this adversarial tradition in social science, in
favour of a more consensual, synthetic approach.

8.2.4 Effect size may help to reduce reporting bias

The file drawer problem

The ‘file drawer problem’ (Rosenthal, 1979) refers to the over-
representation in published work of statistically significant results,
leading to overall bias. Research syntheses based on easily available
studies are liable to over-estimate the size of an effect, because those that
failed to achieve statistically significant results are less likely to be
published. It is certainly possible that increased use of effect size would
reduce this bias.

Within-study reporting bias

Even within a study it is impossible to know how many ‘non-significant’
relationships have been tested, consciously or not, in order to find the
‘significant’ ones that are presented. The statistical significance of a
result depends not just on the data, but on the way such findings were
sought. This is a particular problem when blanket, multiple significance
tests are used to identify ‘significant’ results (Wilkinson et al., 1999).

8.2.5 Effect size allows the accumulation of knowledge

Evidence from different studies can easily be combined

One of the most obvious advantages of using effect size is that when a
particular experiment has been replicated, the different effect size
estimates from each study can easily be combined to give an overall best
estimate of the size of the effect. This process of synthesising
experimental results into a single effect size estimate is known as ‘meta-
analysis’ (Glass ef al., 1981).

Meta-analysis, however, can do much more than simply produce an

overall ‘average’ effect size, important though this often is. If, for a
particular intervention, some studies produced large effects, and some
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small effects, it would be of limited value simply to combine them
together and say that the average effect was ‘medium’. Much more
useful would be to examine the original studies for any differences
between those with large and small effects and to try to understand what
factors might account for the difference. The best meta-analysis,
therefore, involves seeking relationships between effect sizes and
characteristics of the intervention, the context and study design in which
they were found (see Rubin (1992); see also Lepper et al. (1999) for a
discussion of the problems that can be created by failing to do this, and
some other limitations of the applicability of meta-analysis).

The recognition that scientific advancement proceeds by the
accumulation of knowledge, not by results considered in isolation, still
seems to be a long way from being accepted by all educational
researchers.

Smali studies count

An important consequence of the capacity of meta-analysis to combine
results is that even small studies can make a significant contribution to
knowledge. For example, the kind of experiment that can be done by a
single teacher in a school might involve a total of fewer than 30 students.
Unless the effect is huge, a study of this size is most unlikely to get a
statistically significant result. Even Fisher, who is often credited with
much of the responsibility for the evils of significance testing, regarded
the 5% level as arbitrary and took as a basis for knowledge the repeated
finding of results at this level, rather than any single highly ‘significant’
result (Tukey, 1969). However, because of the orthodoxy of significance
testing, these small studies may never be done, having been rejected at
the planning stage as having insufficient power. According to
conventional statistical wisdom, therefore, the experiment is not worth
doing.

However, if the results of several such experiments are combined using
meta-analysis, the overall result is likely to be highly statistically
significant. Moreover, it will have the important strengths of being
derived from a range of contexts (thus Increasing confidence in its
generality) and from real-life working practice (thereby making it more
likely that the policy is feasible and can be implemented authentically).
A large number of studies with small samples and similar results may
provide more evidence about a phenomenon than a single large study,
but taken individually none of them may have the power to achieve
statistical significance.
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8.3 Problems in using effect size measures

It has been argued above that the wider use of effect sizes has the
potential to reduce some of the anomalies that have been identified with
inappropriate usecs of statistical significance tests. However, it is
important to remember that more careful and appropriate use of
significance tests could also have the same effect. Moreover, there is no
guarantee that the unthinking use of significance tests would not simply
be replaced by an unthinking use of effect sizes, without any sigmificant
improvement in research practice (Wainer and Robinson, 2003).

Much of the debate on the problems of significance testing has been
characterised by strong feelings and polarised positions, making it hard
to see the true complexity of the sitwation. It is important in advocating
the use of effect sizes that their benefits are not over-claimed and their
limitations not overlooked. The following section outlines some of these
limitations and complexities, pointing out some problems that may arise
from their use.

8.3.1 Which effect size?

A number of statistics are sometimes proposed as alternative measures
of effect size, other than the ‘standardised mean difference’. Some of
these will be briefly considered here.

Proportion of variance accounted for

If the correlation between two variables is ‘r’, the square of this value
(often denoted with a capital letter: Rz) represents the proportion of the
variance in each that is ‘accounted for’ by the other. In other words, this
is the proportion by which the variance of the outcome measure is
reduced when it is replaced by the variance of the residuals from a
regression equation. This idea can be extended to multiple regression
(where it represents the proportion of the variance accounted for by all
the independent variables together) and has close analogies in ANOVA
(where the appropriate statistic is usually called ‘eta-squared’, 1%).

Because R has this ready convertibility, it (or alternative measures of
variance accounted for) is sometimes advocated as a universal measure
of effect size (e.g. Thompson, 1999). One disadvantage of such an
approach is that effect-size measures based on variance accounted for
suffer from a number of technical limitations, such as sensitivity fo
violation of assumptions (heterogeneity of variance, balanced designs)
and their standard errors can be large (Olejnik and Algina, 2000). They
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are also generally more statistically complex and hence perhaps less
casily understood. Further, they are non-directional; two studies with
precisely opposite results would report exactly the same variance
accounted for. However, there is a more fundamental objection to the use
of what is essentially a measure of association to indicate the strength of
an ‘effect’.

When is an effect not an effect?

Expressing different measures in terms of the same statistic can hide
important differences between them; in fact, these different ‘effect
sizes” are fundamentally different, and should not be confused. The
crucial difference between an effect size calculated from an experiment
and one calculated from a correlation is in the causal nature of the claim
that is being made for it. Moreover, the word ‘effect’ has an inherent
implication of causality: talking about ‘the effect of A on B’ does
suggest a causal relationship rather than just an association.
Unfortunately, however, the word ‘effect’ is often used when no explicit
causal claim is being made, but its implication is sometimes allowed to
float in and out of the meaning, taking advantage of the ambiguity to
suggest a subliminal causal link where none is really justified.

This kind of confusion is so widespread in education that it is
recommended here that the word ‘effect’ (and therefore ‘effect size’)
should not be used unless a deliberate and explicit causal claim is being
made. When no such claim is being made, we may talk about the
‘variance accounted for’ (Rz) or the ‘strength of association’ (r), or
simply — and perhaps most informatively — just cite the regression
coefficient (Tukey, 1969). If a causal claim is being made it should be
explicit and justification provided. Fitz-Gibbon (2002) has
recommended an alternative approach to this problem. She has
suggested a system of nomenclature for different kinds of effect sizes
that clearly distinguishes between effect sizes derived from, for
example, randomised-controlled, quasi-experimental and correlational
studies.

Other measures of effect size

One problem with the use of the ‘standardised mean difference’ measure
of effect size is that its interpretation is very sensitive to violations of the
assumption of normality. For this reason, a number of more robust (non-
parametric) alternatives have been suggested. Some examples are
discussed by Coe and Merino (2003, pp. 171-2).
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There are also effect size measures for multivariate outcomes. A detailed
explanation can be found in Olejnik and Algina (2000). Finally, a
method for calculating effect sizes within multilevel models has been
proposed by Tymms er al. (1997) and others in this volume. Good
summaries of many of the different kinds of effect size measures that can
be used and the relationships among them can be found in Snyder and
Lawson (1993), Rosenthal (1994) and Kirk (1996).

Differences between proportions

Finally, a common effect size measure widely used in medicine is the
‘odds ratio’. This is appropriate where an outcome is dichotomous:
success or failure, a patient survives or does not. Explanations of the
odds ratio can be found in a number of medical statistics texts, including
Altman (1991), and i Fleiss (1994).

In fact, in the case where a single comparison is made between two
proportions, one could argue that those proportions can themselves
already be easily interpreted and that a complex statistical reformulation
of them is of little value. The main value of the odds ratio comes in
combining the results from different studies in meta-analysis.

Unstandardised (raw) difference

Just as one does not need to overcomplicate the interpretation of the
difference between two proportions, there are some cases where a
continuous variable is measured on a familiar scale and one can simply
report the difference between the two means, without standardising.
Examples of umiversally familiar scales would include outcomes
involving time (measured in seconds, days, years, etc), money (pounds,
dollars), length (metres) etc. Some scales could be assumed to be familiar
within a particular context, for example A level grades in England.

8.3.2 Which standard deviation?

A pooled estimate

The standard deviation, used to standardise the standardised mean
difference, should ideally refer to the whole population. One might
expect that the control group would provide the best estimate of standard
deviation, since it consists of a representative group of the population
who have not been affected by the experimental intervention. However,
unless the control group is very large, the estimate of the ‘true’
population standard deviation derived from only the control group is
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likely to be appreciably less accurate than an estimate derived from both
the control and experimental groups, since it is typically only half the
size. Moreover, in studies where there is not a true control group then it
may be an arbitrary decision which group’s standard deviation to use,
and it will often make an appreciable difference to the estimate of effect
size.

For these reasons, it is often better to use a ‘pooled’ estimate of standard
deviation (Hedges and Olkin, 1985). The pooled estimate is essentially
an average of the standard deviations of the experimental and control
groups, otherwise known as the *within-groups’ standard deviation. The
implications of choices about which standard deviation to use are
discussed by Olejnik and Algina (2000).

The use of a pooled estimate of standard deviation depends on the
assumption that the two calculated standard deviations are estimates of
the same population value. In other words, that the experimental and
control group standard deviations differ only as a result of sampling
variation. Where this assumption cannot be made (etther because there is
some reason to believe that the two standard deviations are likely to be
systematically different, or if the actual measured values are very
different), then a pooled estimate should not be used.

Statistical controls: residual standard deviation

An easy way to make an effect size substantially bigger is to divide the
difference by the residual standard deviation, after mtroducing
appropriate explanatory variables into a statistical model, instead of just
the standard deviation of the raw outcome. For example, in a regression
(or multilevel) model in which half the variance is accounted for (R2 =
(0.5), an effect size calculated using residual standard deviation would be
40% larger than it would have been if the standard deviation of the raw
outcome had been used. For this reason, one should certainly at least
make it clear which kind of effect size is being used, and present the
variance accounted for by the model (Rz). Further, the use of residual
rather than raw standard deviation must require some justification,

It is possible to think of some circumstances in which this kind of
inflation may be justified. If the residuals relate to the gain between a
pre-test and post-test score on the same measure, then they could
arguably be interpreted as a direct measure of the progress made
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between the two measurements. In this case, one could perhaps talk
about the effect on progress of an intervention (as compared to the effect
on the raw outcome post-test scores) and compute an effect size as the
difference between the mean residual gains of the two groups, divided by
the residuoal standard deviation. The interpretation of such an effect size,
however, and consequently its use in any comparison or synthesis with
other effect size estimates, would be very problematic, since it would be
highly sensitive to the strength of the correlation between pre- and post-
test measures. An example of the kind of anomaly this could generate 1s
that effect sizes from short-term interventions would be likely to be
larger than for those that were more sustained, since the shorter test-
re-test interval could be expected fo result in higher correlations.

Populations with restricted range

Another problem that relates to the standard deviation used to calculate
an effect size arises when the samples used are drawn from a group with
a more restricted range than some theoretical overall population. Ideally,
in calculating etfect-size one should use the standard deviation of the full
population, in order to make comparisons fair. However, there will be
many cases in which unrestricted values are not available, either in
practice or in principle. For example, in considering the effect of an
intervention with university students, or with pupils with reading
difficulties, one must remember that these are restricted populations. In
reporting the effect-size, one should draw attention to this fact; if the
amount of restriction can be quantified it may be possible 0 make
allowance for it. Any comparison with effect sizes calculated from a full-
range population must be made with great caution, if at all.

8.3.3 WMeasurement reliability

A further factor that can spuriously affect an effect-size is the reliability
of the measurement on which it is based. According to classical
measurement theory, any measure of a particular outcome may be
considered to consist of the ‘true” underlying value, together with a
component of random ‘error’. The problem is that the amount of
variation in measured scores for a particular sample (i.e. its standard
deviation) will depend on both the variation in underlying scores and the
amount of error in their measurement.

To give an example, an experiment could be conducted where an
experimental and control group were each given two different post-tests
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measuring the same construct, one more reliable than the other. This
would typically be the case if, say, one test were longer than the other, or
consisted of more discriminating items, or was better targeted at the
particular range of scores found in the two groups. For whatever reason,
though, the less reliable test would contain more error in its scores and
would therefore have a larger standard deviation. Thus, although the true
effect was the same, the calculated effect sizes will be different.

In interpreting an effect size, it is therefore important to know the
reliability of the measurement from which it was calculated. This is one
reason why the reliability of any outcome measure used should be
reported. It is theoretically possible to make a correction for unreliability
(sometimes called ‘attenuation’), which gives an estimate of what the
effect size would have been, had the reliability of the test been perfect.
However, in practice the effect of this is rather alarming, since the worse
the test was, the more you incrcase the estimate of the effect size.
Moreover, estimates of reliability are dependent on the particular
population in which the test was used and are themselves anyway subject
to sampling error. For further discussion of the impact of reliability on
effect sizes, see Baugh (2002).

8.3.4 Non-normal distributions

The interpretations of effect-sizes in terms of percentiles at which they
overlap depend on the assumption that both control and experimental
groups have a normal distribution, Needless to say, if this assumption is
not true then the interpretation may be altered, and in particular, it may
be difficult to make a fair comparison between an effect-size based on
normal distributions and one based on non-normal distributions.

An illustration of this is given in Figure 8.2, which shows the frequency
curves for two distributions, one of them ‘Normal’, the other a
‘contaminated normal’ distribution (Wilcox, 1998), which is similar in
shape, but with somewhat fatier extremes. In fact, the latter does look
just a little more spread-out than the Normal distribution, but its standard

-deviation is actually over three times as big. The consequence of this in

terms of effect-size differences is shown in Figure 8.3. Both graphs show
distributions that differ by an effect-size equal to 1, but the appearance
of the effect size difference from the graphs is rather dissimilar. In graph
(b), the separation between experimental and control groups seems much
larger, yet the effect size is actually the same as for the Normal
distributions plotted in graph (a). In terms of the amount of overlap, in
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graph (b} 97% of the 'experimental’ group are above the confrol group
mean, compared with the value of 84% for the normal distribution of
graph (a). This is quite a substantial difference and illustrates the
problem of interpreting effect sizes when the distribution is not known to
be normal.

Figure 8.2 Comparison of Normal and non-Normal distributions

Standard normal distribution
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8.3.5 ‘Small’, ‘medium’ and ‘large’ effecis

In his original presentation of the standardised mean difference, Cohen
(1969) cautiously provided the interpretation that within psychological
research, 0.2 could be considered a small effect, 0.5 medium and (.8
targe. Unfortunately, and particularly in text books where effect size 13
given a brief and somewhat token mention, these interpretations seem to
have become part of the orthodoxy of effect size interpretation. This is
unfortunate because the issue of whether an effect should be considered
‘large’ depends on a number of tactors. These might include the costs of
implementing the intervention, its practical feasibility, the benefits
associated with the difference produced and the value attached to those
benefits, as well as the sizes of other effects produced by comparable
interventions in the same context and with the same outcome (Glass ef
al., 1981, p. 104). The interpretation of the size of an effect should also
depend on the technical issues outlined above, such as measurement
reliability and range restriction. Coe (2002) gives examples of effect
sizes from a range of interventions in education and elsewhere along
with some further interpretations of effect sizes in order to provide a
context for these kinds of comparisens.

8.3.6 Incommensurability

One final caveat should be made here about the danger of combining
incommensurable results. Given two {or more) numbers, one can always
calculate an average; when they are both effect sizes this temptation is
particularly seductive. However, if they are effect sizes from experiments
that differ significantly in terms of the outcome measures used, then the
result may be totally meaningless. It is very easy, once standardised,
scale-free effect sizes have been calculated, to treat them as all the same
and lose sight of their origins. Certainly, there are plenty of examples of
meta-analyses in which the juxtaposition of effect sizes is somewhat
questionable.

In comparing (or combining) effect sizes, one should therefore consider
carefully whether they relate to the same outcomes. This advice applies

- not only to meta-analysis, but to any other comparison of effect sizes.

Moreover, because of the sensitivity of effect size estimates to reliability
and range restriction (see above), one should also consider whether those
outcome measures are derived from the same (or sufficiently similar)
instruments and the same (or sufficiently similar) populations.

It is also important to compare only like with like in terms of the
treatments used to create the differences being measured. In the
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education literature, the same name is often given to interventions that
are actually very different, for example, if they are operationalised
differently, or if they are simply not well enough defined for it to be clear
whether they are the same or not. It could also be that different studies
have used the same well-defined and operationalised treatments, but the
actual implementation differed in the fidelity of its delivery, or that the
same treatment may have had different levels of intensity in different
studies. This applies equally to the ‘treatment’ applied to the control
group; a comparison based on a ‘treat as normal’ control may be quite
different from a ‘withhold treatment’ group. In any of these cases, it
makes no sense to average out their effects.

Summary and recommendations

Effect size is a standardised, scale-free measure of the relative size of the
effect of an intervention. It is particularly usefal for quantifying effects
measured on unfamiliar or arbitrary scales and for comparing the relative
sizes of effects from different studies. Interpretation of effect size
generally depends on a number of assumptions, including that ‘control’
and ‘experimental’ group values are normally distributed and have the
same standard deviations. Effect sizes can be interpreted in terms of the
percentiles or ranks at which two distributions overlap, in terms of the
likelihood of identifying the source of a value, or with reference to
known effects or outcomes.

The use of an effect size with a confidence interval conveys the same
information as a test of statistical significance, but with the emphasis on
the significance of the effect, rather than the sample size. Moreover, it
has been argued that the wider use of effect sizes could help to avoid
some of the problems that have been associated with significance tests,
including their requirements for inappropriate dichotomous decisions
and their tendency to ignore any information about the magnitude of a
difference and lead to a reclaiming of the meaning of the word
‘significance’ to be more in line with common usage. Effect size use may
also draw attention to the vital issue of statistical power in making
comparisons and reduce the potential both for sampling variation to be
misinterpreted as true difference and for the failure to find a clear
difference to be misinterpreted as evidence of no difference. This in turn
may help to reduce reporting bias, both across and within studies. Effect
sizes enable the results from different studies to be combined, leading to
a more rational approach to the accumulation of knowledge and freeing
research from the restrictive requirement that an individual study must
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single-handedly and in isolation provide definitive answers to its
research questions.

Despite these potential advantages, however, the use and interpretation
of effect sizes is not without its problems. Choices about which standard
deviation to use for calibrating differences as well as any restriction of
range, measurement reliability or deviations from normality can all
spuriously and covertly affect the interpretation of a calculated effect
size. It is also very easy to combine or compare effect sizes that are
essentially incommensurable, so creating a seductively simple but
meaningless statistic.

1t is therefore recommended that researchers should:

e calculate and report standardised effect sizes, with confidence
interval or standard error, for all comparisons where a statistical
significance test might have been done

e show these effect sizes and their confidence intervals graphically

e rteport all relevant comparisons regardless of whether confidence
mtervals include zero (i.e. whether they are statistically significant),
especially if the comparison was planned before any data were seen

o interpret effect sizes by comparison with known effects and in
relation to familiar metrics

s report un-standardised raw ditferences whenever the outcome is
measured on a familiar scale
o interpret the significance of an effect with regard to issues such as its:
— effect size
— theoretical importance
— associated benefits
— associated costs
- policy relevance
— [feasibility
— comparison with available alternatives
— sampling error (statistical *sigmificance’)
e not use the word ‘effect’ (with or without “size”) unless a causal claim
is intended and can be justified. Be cautious about the calculation and
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interpretation of standardised effect sizes whenever:

|

sample has restricted range

population is not known to be normal

t

outcome measure has low or unknown reliability

outcomes have been statistically adjusted (residuals)

e always report reliability of measures, extent of restriction,
- 2.
correlations (or R ) in these cases

e encourage small studies with low power and statistically non-
significant effects still to be conducted, reported and published,
provided they are free from bias

o synthesise the results of compatible studies using meta-analysis

o beware of combining or comparing effect sizes from studies with
incommensurable outcomes, different operationalisations of the same
outcome, different treatments, or levels of the same treatment
(including control group ‘treatments’), or measures derived from
different populations.
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9 Effect size: a statistician’s pseudo-concept?
Ray Godfrey

This paper uses a philosophical approach to raise questions about the
usefulness or otherwise of the notion of effect size.

First a word about how philosophy works. For this paper 1 wish to make
a point about the use of effect sizes by employing the distinction between
a concept and a pseudo-concept. The distinction is something 1 have
invented for the purpose of making the point about effect sizes. As with
any distinction, once I have explained what I mean by pseudo-concept it
will not be difficult for others fo argue that everything is a pseudo-
concept or that nothing is a pseudo-concept or that the distinction is
totally unintelligible. It would be disappointing if my idea aroused so
little interest that nobody bothered to do this. What [ hope to achieve is
to make my point before readers become disenchanted. Once the point is
made, the distinction becomes unimportant. If I am very successful,
readers will find my arguments so convincing that they will not be able
to believe that my point is not obvious, so obvious that it could have been
stated much more briefly and possibly even so obvious that it did not
need stating at all. If T am unsuccesstul, the paper will be dismissed as
an attack on advanced statistics.

Rather like statistics, theories of meaning became much more
sophisticated during the twentieth century. Previously, people had
regarded a word as having a meaning and the meaning of a sentence or
proposition as being formed by combining the meanings of all the words
in it. This view was often combined with a belief that the sentence or
proposition was true if the picture it painted of the world corresponded
to the way the world actually was. “The cat sat on the mat’ is true
precisely if the bit of the world called ‘the cat’ is connected to the bit of
the world called ‘the mat’ in exactly the way that the phrase ‘sat on’
suggests.

The later work of Wittgenstein employs a much more subtle (and
perhaps more productive) approach of looking for meaning in the way
words are used in the language games of life. He is able to make some
quite profound points that would not be easily accessible in a more
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formal and restrictive philosophy (see Wittgenstein (1969) for some
useful insights into the nature of knowledge). “The cat sat on the mat’ is
true if used in circumstances where the rules of the language game make
this an appropriate thing to say.

Some later philosophers seem to have stopped trying to link meaning to
the world or to life at all.

As in statistics there are some things that are best done using a simple
t-test, so I think there are some points best made using unsophisticated
theories of meaning. Take a concept to be something that has sense and
possibly reference. The concept of ‘cat’ has a sense that we have to be
aware of if we are to use the word in the same way as other English
speakers. It also has a reference: it refers to each and every cat in the
world. The sense is related closely to the reference (sec Frege (1952) for
a thorough treatment of this). Here we have a word that has meaning.

Some words cannot be discussed so easily in terms of sense and
reference. It is easier to follow the later Wittgenstein and look instead at
their use. These words operate in the grammar of a language as if they
were concept-related words, but actually carry no sense. This does not
mean that they are nonsensical. It does mean that when you try to explain
their meaning the task turns out to be not only difficult but impossible. I
shall call these psendo-concepts.

One way in which pseudo-concepts come about is by illusions created by
grammar. In modern English it is very easy to generate nouns simply as
turns of phrase. If we see someone who behaves intelligently, it is no
more than correct use of grammar to say that he is intelligent or that he
shows intelligence. We can then think about intelligence as if it were a
thing, some sort of entity that the person possesses. There is no entity to
which ‘intelligence’ refers nor any sense by which it might refer to
something (see Ryle (1949) and Chomsky (1957} for similar thoughts).
This is a pseudo-concept. Psychology would be very difficult without
such pseudo-concepts. The way in which psychologists (and others)
employ them is all that there is to discuss if we wish to see their
meaning. But if psychologists reach conclusions that cannot be
translated back into terms of people behaving intelligently, something
very strange and possibly dangerous has occurred.

The point I am making here is related to the view of infinity and
infinitesimals taken by some philosophers of mathematics (see Boyer
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(1959, pp. 217-223) for a summary of Leibniz’s position). Infinitesimals
are taken as meaningless ideal elements in mathematics, which can be
used in proofs only provided that logical rules are adhered to and only so
long as the conclusions are expressed in terms of concepts that have
meaning. One way to look at the constructivist school of mathematical
philosophy (not to be confused with the constructivist school of
educational psychology and philosophy) is as an attempt to avoid the use
of pseudo-concepts in order to avoid being led into error by them.

Pseudo-concepts are not always (or even usually) a bad thing. Advanced
mathematics could not be engaged in without them. Even some quite
simple mathematics only becomes accessible once students develop
pseudo-concepts. One type of pseudo-concept that is relevant here is the
procept, an idea introduced by David Tall (1991) (see also Grey and Tall,
1994). The point is that when students start to work with something like
the fraction 3/5 it is initially shorthand for a process that you go through.
When you see “3/5’, you have to split something into five parts and use
only three of them. As long as the student sees this as a process they can
make no progress with fractions. It is necessary to become so familiar
with ‘3/5" that you think of it as if it were an entity in itself. Until 3/5
becomes a thing in its own right it is difficult to make sense of *3/5 + 2/3°
and absolutely impossible to make sense of things like ‘In(n*)" . The
best way to explain to someone the meaning of 3/5 in ‘In(;t**)” is to show
them how it is used.

Another example is directed numbers. As long as you see ~27 as
something to do with counting along a number line or something related
to how much money you have in your bank balance it will not be
possible to make much sense of * -2 X -3 = +6°,

There are two types of danger related to pseudo-concepts that I think are
relevant to the debate over effect sizes. The first of these concerns
learning to do mathematics or at least trying to understand it. The basis
for my comments is thirty-three years of reflection on attempts to teach
mathematics or statistics to people of all ages and of varied educational
attainment. Part of this reflection has inveolved reading research reports,
but my views do not depend upon research evidence.

One of the things that can make it difficult to understand mathematics is
a failure to realise that the ideas involved are not concepts but pseudo-
concepts. In a sense they have uses but no meanings. Learners can feel
that they do not understand a topic because, although they can carry out
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all the required manipulations, they cannot see what it means. At the
Open University M101 Summer School there used to be a session on
relations. Students would come to the Summer School having covered
the unit on relations and in some cases having correctly answered all the
assessment questions. They would attend the session in a state of
bafflement. The best strategy for dispelling this baftlement seemed to be
to persuade them that they already understood all there was to
understand and there was no mysterious entity called a relation that they
needed discover. ‘Relation’ is just a word that we use in situations where
you can do all the things they had been doing. Many people went away
much happier once they stopped trying to understand the meaning of it.
After passing that hurdle it was possible to speak and think as if the word
did refer to something, a mathematical object.

The misunderstandings of percentages caused by people thinking that a
‘per cent’ is a thing that can be combined with other “per cents’ in preity
much the same way as other things are too commen to need an account here.

Statistics provides a further basic example. One of the first notions that
many students of statistics encounter is that of standard deviation. 1
suspect this is responsible for much distaste for statistics as a whole,
First, teachers often insist that students calculate standard deviations.
This is probably one of the most difficult calculations the students have
ever been asked to carry out and could well put them off. Alternatively,
they may be allowed to obtain standard deviations using calculators or
computers. In either case many of them are dissatisfied because they do
not know what a standard deviation is. They want to know what it means.
In response to this the teacher can recapitulate the method of calculation,
which occasionally satisties some, or give examples of the way in which
it is used. You can use standard deviations to compare the dispersion of
different samples, to carry out t-tests or even to calculate effect sizes, but
none of this tells you what they mean. Students will not make much
progress in statistics until they can accept that a standard deviation is just
a number that is calculated in such-and-such a way, is nsed in such-and-
such a way and has no independent meaning in between times. Many
students who later go on to be successful do this without effort and
without thinking. Many others find it a stumbling block.

The notion of an effect is more troublesome than that of standard
deviation. A statistical effect often has nothing to do with cause and
effect, thus causing some confusion. More importantly there is no such
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thing as the effect, pure and simple, of gender (say) on key stage 2
attainment. The effect of gender depends on the statistical model in
question. Even within the same type of model, the inclusion of different
combinations of other explanatory variables alongside gender may leave
gender with more or with less effect. Robert Coe’s criticisms of the
notion of ‘effect’ are also relevant here. The word is suggestive of
causality. It is also suggestive of reality.

Turning to ‘effect size’, this suffers from all the problems associated
with ‘standard deviation’, all those associated with ‘effect” and a few
more of its own.

Effect size is partly a matter of experimental design. Any book on the
subject will tell you how to calculate the sample size necessary in order
to achieve a given power for a particular effect size and for a given
critical significance level, A good book (Lipsey (1998) for example) will
tell you that increasing the sample size may be expensive or even
impossible and that you should first ensure that your experiment is
designed optimally so that the effect size is as large as possible. Use
more refined measuring instruments. Control the experimental
conditions more finely. Reduce diversity in the participant groups. Make
the difference between expermmental and control conditions more
marked. These and other devices ensure that against the background of
the same real-world phenomena the effect size is increased, so for the
same sample size the power will be increased. It matters little here
whether effect size is a concept or a pseudo-concept. It fulfils a vital
function in the thinking of the experimental designer and no one else
need ever know about it. Most people only wish to know the sample size
necessary to achieve their aims.

This book is concerned with other, and to my mind more questionable,
aspect of effect sizes: their use in communicating results.

Very few people understand the notions of statistical significance, power
and the like. Even the first edition of Cohen’s classic work on power and
effect sizes contains one blunder in this respect (Cohen (1988, p. 6)
corrects ‘virtually no power’ to ‘no power, since that conclusion is
inadmissible’). Furthermore, statistical significance is not the same as
educational importance. A poorly designed study may well fail to find
significant evidence for an important educational effect. Neither is this
the same as finding a number in our statistical results which looks a lot
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bigger than other numbers appearing in the same context. For example
in regression models the constant term may be quite large compared with
other parameters, but be of no educational interest and not necessarily
significant. For these and other reasons it is a good idea to present results
in a way which appears to answer the questions: ‘Exactly what
difference does this variable make?’, ‘Exactly what difference does class
size make to attainment?’, ‘Exactly what difference does ethnicity make
10 school exclusions?’ They want to know, in Cohen’s phrase, ‘the degree
to which the phenomenon exists’ (Cohen, 1988, p. 4). The answer people
want to these questions is something that has both sense and reference in
the real world. I suggest that, in effect size, what we offer them is a
pseudo-concept.

Effect size is sometimes used to refer to something that does have
meaning in the world beyond statistics. Effect size may be measured in
real units. In medicine there is a reasonable chance that virtually all
studies on a particular topic are concerned with measuring the same
phenomena on the same scale, and giving effect sizes in terms of blood
pressure or cholesterol levels appears unproblematic. There is less
chance of this occurring in education. There may be a number of studies
using the same NFER standardised test, there may be a number of
studies using A-level point scores, but there is no reason why everybody
interested in a topic should consider these measures to be the best for

~ their purposes, especially if their work is not confined to England. Some

of my work is concerned with absence from school and you might think
that an absence rate is an absence rate, but the DfES Performance Tables
give four different measures and there is no guarantee that any one of
them, or any particular combination of them, will be best suited to every
study of absenteeism.

Effect sizes can also be given in absolute units. These may be difficult to
understand but they do at least give an unambiguous measure of how an
intervention has changed things. They are frequently related to binary
outcomes. In medicine, mortality or morbidity rates are usuvally
unambiguous (though not necessarily accurately measured) and changes
in these can be given in terms of odds ratios or a range of other absolute
measures. In education binary outcomes are sometimes important but
frequently of only secondary interest. Much of my work is concerned
with exclusions from school, but in many ways the least interesting thing
you can ask about a pupil’s school history is whether they have been
permanently excluded from a school in a formal way that leads to an



Effect size: a statistician’s pseudo-concept?

entry in the official exclusion statistics. An intervention which could be
evaluated simply in terms its odds ratio for a pupil’s chance of official
exclusion would probably not be a very interesting one.

These two ways of conveying effect size can lull people into thinking
that the phrase ‘effect size’ in itself has some clear meaning. They can
encourage people to look at standardised effect sizes, such as Cohen’s d
as if they were real units or as if they were absolute measures. Neither is
the case.

Brown et al. (2003) refer to a single effect size in their brief summary of
a large research project. They state that the implementation of the
National Numeracy Strategy ‘demonstrated an effect size of 0.18 on
children’s attainment. Schweinhart er al. (1993) make very full use of
standardised effect sizes in the many tables of their report on the effects
of the Perry High/Scope project, though their argument is developed
largely in terms of significance. To say intervention has a small effect
size is not the same as saying that it has no educationally important
effect.

Standard effect sizes do not tell us about a two-sided relationship
between the intervention and the real world. They tell us about a three-
sided relationship between the intervention, the real world and the study
design. To calculate Cohen’s d what you do is very much like carrying
out a t-test but stopping just before you take sample size into account and
well before you calculate a significance level. Given the role of d in
calculating samples sizes necessary to achieve given significance levels
and required power level, this is not surprising. If for a given d and an
intended sample size the power is too low, there are two approaches to
increasing the power. One is fo increase sample size. The other is to
redesign the experiment to reduce error variance. A retrospectively
calculated Cohen’s d tells us something about the relationship between
the effect of the intervention on the real world and the quality of
experimental design.

Cohen’s d is not an absolute measure, though it is (like all ratios)
dimensionless. The impact of the intervention is given not in absolute
terms, but in relation fo the standard deviation of the variable used to
measure the effect. Standard deviation itself suffers from the drawbacks
associated with pseudo-concepts. This makes it difficult to build upon it
anything other than further pseudo-concepts. But the choice of standard
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deviations raises even more problems for anyone wishing to claim that
‘effect size’ has a clear meaning. Debates over whether to estimate
population standard deviations from the control group or from pooled
data are relatively unimportant. What removes any residual chance of
finding a clear meaning in Cohen’s d is the question of which population
the standard deviation is calculated or estimated for. With a standardised
test, the NFER will give you a population standard deviation, but this
will not be the same as the standard deviation for the stratum of pupils at
whom a particular intervention is aimed. Nor is it necessarily true that
the standard deviation found in the mathematically poor achievers in
three study schools is the same as the standard deviation in the group of
mathematically poor achievers that concern teachers in another school
who are trying to judge the effectiveness of the intervention.

Complex procedures for estimating ‘real” effect sizes in the face of
abstruse statistical difficulties or for calculating effect sizes for forms of
statistical analysis further and further removed form the simple t-test
exemplified in Peter Tymms’ paper (Chapter 5) are very useful for
statisticians but do nothing to dispel the idea that effect size is a
meaningful thing that refers to some observable characteristic of the real
world beyond statistics that statisticians are anxiously trying to grasp and
express. We should at least try to find forms of expression that convey to
the broader public the nebulosity of the ideas involved and the intimate
dependence upon the nature of effect size and the nature of the statistical
design and analysis that lie behind it. Alternatively we could follow the
lead of lan Schagen (in Chapter 3) and look for other simpler ways of
presenting the results of complex models, models that may well have
been guided in their development by considerations of effect sizes.

If there are absolute units or generally understood units in which effect
sizes can be given and mean effect sizes calculated, all well and good.
But if effect sizes can only be given in standardised form or if
aggregation of evidence can only be done using standardised effect sizes,
then we have to accept that the notion we are using is a pseudo-concept,
extremely useful within the world of statisticians but of no real meaning
in the world beyond that.
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Caroline Sharp

When my colleague Ian Schagen approached me to be a discussant for
this seminar, my immediate reaction was: ‘But I don’t know anything
about statistics’. Tan replied: ‘I know, that’s why I want you to do it.” [
think what he was trying to say was that in approaching the issue of
effect size, the organisers of this seminar wanted to address the concerns
and interests not just of statisticians but also of their non-statistician
colleagues and clients.

My approach to the task has been to ask whether and to what extent
effect size is useful in educational research. Does it convey information
that is additional to that offered by other types of statistical analyses? If
so, what kind of information and how is this best interpreted? What are
its limitations and what are the potential pitfalls that researchers should
be aware of when seeking to use effect size to make inferences, draw
conclusions or make recommendations?

I am grateful to Robert and Ray for addressing these questions in
Chapters 8 and 9. T understand that their positions differ: Ray’s paper
is much less enthusiastic about the use of effect size than is Robert’s,
But let me begin with what they have in common.

Both writers are concerned with the way in which statistics convey
meaning o non-statisticians. Let’s start with the name. As a sometime
editor of my colleagues’ draft reports, 1 have enough trouble with the
term ‘significance’. Because significance has both an everyday meaning
(something like ‘important’ or ‘noteworthy’) and a more technical
meaning of ‘statistical significance’, this can lead to confusion. Are we
in danger of suggesting too much in the very name ‘effect size’? As
Robert’s paper points out, ‘effect’ carries an implication of ‘cause and
effect’ and thus may mislead people to believe that a causal relationship
has been established, whether or not this is the case.

Robert therefore suggests that we should use the term conditionally, only
when a claim for causality is intended. This is an inferesting suggestion,
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but by doing this we need to be clear that the term is no longer being
attached to a particular concept, but rather to the intended interpretation
of the concept in a specific context. Unless we can come up with an
alternative way of naming the ‘effect size’ calculation, I can imagine that
this might cause difficulties for researchers trying to communicate with
statisticians (could you do that calculation for me, you know the one
that’s called an ‘effect size” some of the time. ..).

This brings us on to the main thrust of Ray’s paper: the pseudo-concept
and its associated problems. What I understand Ray to be arguing is that
effect size is a pseudo-concept because it has no real world existence or
correspondence. Other pseudo-concepts mentioned in Ray’s paper are
intelligence, fractions, percentage and standard deviation.

Ray points out that pseudo-concepts, although useful to mathematicians,
already cause much confusion in the real world because they have no
concrete reality. Nevertheless, 1 would argue that such pseudo-concepts
are indispensable in statistics, if not in life. I found Ray’s discussion
helpful in explaining the root causes of the difficulties we all encounter
in understanding and applying such concepts. What I couldn’t work out
was what Ray was suggesting we should do about this in respect of effect
size. Should we reject effect size because it is likely to cause confusion
and lead to inappropriate decision making, or should we proceed with
considerable caution?

In talking about the somewhat narrow issue of the application and
interpretation of effect size, both Ray and Robert refer to one of the
biggest challenges for applied social researchers: how do we provide
information of use to policy makers and practitioners? The problem is
that policy makers and practitioners often want simple answers, and get
frustrated with researchers trying to over-complicate things. On the other
hand, researchers and statisticians get frustrated when they can see the
complexity of the issues involved, but find that policy makers and
practitioners want simple messages: what does this mean and what
should I do about it? This problem will not go away,

Like Robert, I can see a potential utility in calculating effect size. As we
know, measures of statistical significance are only helpful to a point.
Rather than concentrating on the boundary between a ‘significant’ and a
non-significant relationship, cffect size adds an appreciation of the
strength of the relationship. It also provides a measure that enables
comparisons to be carried out between independent studies.
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1 well remember a civil servant contacting the NFER urgently, saying
that the minister was about to make a speech and wanted to know how
much of an effect had been produced by the intervention we were
evaluating and how well it compared to other educational initiatives,
both in the UK and worldwide. Now, as it happened we had calculated
effect sizes as well as using other statistical measures and we were able
to make a calculation in relation to months of progress. Our problem in
comparing initiatives was that very few other evaluation studies had
reported effect size (or even standard deviations) so we simply couldn’t
make the comparisons the minister was seeking.

In conclusion then, what I take from these two papers s very useful food
for thought. Ray has exposed me to the concept of the pseudo-concept
(is that a pseudo pseudo-concept?) and has led me to reflect on its
implications for translation of abstract concepts into something
meaningful in the real world. Robert has clarified some of the potential
advantages of effect size and suggested some of its applications: both
Robert and Ray have pointed out its limitations and have alerted us to
some key issues. I would like to thank you both for keeping a non-
statistician challenged and informed.
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Michela Gnaldi and Paula Hammond

The use of effect sizes is a keenly debated topic and one that is seen as
an important issue in educational research and evaluation for policy
making. This chapter discusses the comments made at the invitational
seminar, jointly organised by the Institute of Education, University of
London and the National Foundation for Educational Research {(NFER)
on 14 November 2003 and the contributions received from the
discussion forum that was available for a month after the event.

11.1 Technical issues

Schagen makes the point that inspite of a general agreement about the
effect sizes for binary variables there are still a number of suggestions on
how to make equivalent effect sizes for continuous variables. Work by
Sammons and Elliot (Chapter 2) and Schagen and Tymms (2003) include
a discussion about such calculation methods. The authors suggest a
range of multiplying factors on the standard deviation (SD) from 1.0
(Sammons and Elliott, Chapter 2) to 2.0 (Tymms, Chapter 5) with
Schagen (Chapter 3) proposing the use of V2 In agreement with Tymms,
Strand comments that using a range from 1.0 SD below the mean to 1.0
SD above the mean (i.e. 2.0 SD) seems integral to the standardised
concept underlying effect sizes and therefore believes that its use would
represent a natural solution to this issue.

Following a further discussion on to how to calculate effect sizes for
continuous variables, Sammons now believes that using the 2.0 SD
methodology would probably be more accessible than using the cautious
1.0 SD approach previously preferred. She adds that, whichever method
is used to calculate effect sizes, it is important that the underlying
rationale is made clear in the reporting.

According to Levaci¢, it is very important to be precise about the
definition of ‘effect size’ because the correct formula to use to obtain the
effect size depends on one’s definition of the term and on the units in
which the variables in the regression equation are measured. She
specifies that the term is often used to mean the effect size in
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standardised units. The effect is then the ‘effect’ on variable Y measured
in standard deviations of a 1 standard deviation change in the variable X.
At other times, it refers to the effect of a 1 unit change in variable X on
variable Y when both variables are defined in natural units.

On the other hand, Gorard suggests an empirical approach to the
calculation of effect sizes and considers the 1.0, 2.0 or 3.0 SD calculation
approach to be too rigid. Gorard suggests that if effect sizes are to be
valuable, the difference between effect size and measurement error has
to be large. Substantial differences rather than a slight variation is what
we need to be concerned with. In other terms, differences that outscale
measurement errors represent what should be disseminated into policy
and practice.

Gorard expresses caution against the use of complex analysis when this
is not justified stating: “if the data can speak don’t interrupt’. Schagen
supports this opinion and argues that Exploratory Data Analysis (EDA)
is an important first stage to any analysis to be able to understand the
depth and richness of the dataset. However, he further argues that it is
impossible to do any analysis without modelling and that even EDA
requires a model. He states that the problem with educational data is that
it tends to have a low ‘signal to noise’ ratio — meaning that there may be
important background factors (e.g. prior attainment) which have a large
impact and failure to account for these may lead to erroneous models.
Schagen states that the conclusions of some simple models may be
confirmed or overturned by further complex models, which take into
consideration a larger range of background factors and relationships.
Schagen provides an example on the impact of class size on pupil
attainment to explain his point.

Most analysis showed a positive relationship — kids do better in bigger
classes... More recent research using sophisticated analysis (by
Blatchtford er af .} has shown a positive impact of smaller classes for
certain groups — but it took a complex model to show the
educationally significant result.

McNeice and Bidgood agree with Schagen’s point and conlirm that,
whilst EDA is important, there is a place for complex modelling within
educational research when such modelling is based on existing coherent
educational theory.

Fitz-Gibbon comments that it would be useful to hold a seminar to
discuss the widespread use of the p < 0.05 level as a criterion for testing
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statistical significance. She states that this is a particularly serious issue
as many people are still surprised that ‘counting how many trials have
vielded statistically significant findings leads to increasingly wrong
conclusions the more data you have’. Sammons agrees with Fitz-Gibbon
about the need for greater clarity in discussing effect sizes and their
meanings. She argues that proper care and attention is required in
reporting research findings in order to stress the nature of the research
design used and recognises that over reliance on the p < 0.05 may be
inappropriate in some instances. McNeice and Bidgood further clarify
the point by stating that statistical significance does not tell policy
makers or practitioners anything about the size of the effect. In education
‘policy makers and practitioners want to know if seemingly significant
effects actually have some meaning’.

Fitz-Gibbon suggests that the incautious reader could believe that there
were already hundreds of effect sizes in educational research. The
reason for this misunderstanding is due to the term effect sizes being
used too widely and without differentiation between the sorts of data
used to calculate effect sizes. It is therefore not sensible to have the
same vocabulary for effect sizes arising from randomised control trials
(RCT) and effect sizes arising from ‘much less robust designs’.
Sammons appreciates that RCTs have a valuable place in educational
research. However, she stresses that RCTs raise serious ethical and
practical issues, and doubts they should be regarded as a ‘gold
standard’. She claims that:

Policy makers and practitioners have a valid interest in the
effectiveness of current provision and variation n quality.
Intervention studies can also have limitations because when rolled out
different levels of commitment/adherence to design or different
contexts may mean different impacts than those identified in an RCT.

Sammons points out that Fitz-Gibbon’s and Tymms’ own studies on
PIPS, ALIS and YELLIS are not based on an RCT model but provide
valuable comparative data. Other educational effectiveness research
similarly has provided important evidence of policy relevance without
using a quasi-experimental design. However, Fitz-Gibbon responds that
whilst epidemiology (PIPS, ALIS and YELLIS) is important, ¢linical
trials are still necessary to ensure that good rather than harm arises from
treatments, interventions, policies etc.

1 . . .
For more information regarding PIPS, ALIS and YELLIS sce www.cemcentre.org,
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11.2 Non-iechnical issues

Andrew Ray discusses the potential use of effect sizes to inform policy
makers and states policymakers are keen to use a wide range of evidence
from the United Kingdom and abroad. To understand what works and to
spread best practice, there need to be measures of effect size which allow
comparisons between different studies based on different policies. On
the other hand, Ray also points to the need for a wider agreement on how
effect sizes are calculated within different research. He points out that in
recent years there has been inconsistent use of the term effect size and
the methodologies used to calculate them.

Researchers sometimes quote large apparent effect sizes. Before
applying these results in policy formulation we need to ask whether the
result is applicable to the current national context and whether achieving
such an effect might be prohibitively expensive. We also need to question
whether a large effect size is in some way misleading; it could be inflated
for example where the intervention is on a relatively homogeneous group
of pupils, such as a top maths stream, where the SD of the group will be
small. Sammons welcomes Ray’s comments on the potential vse of
effect sizes, his critical questions and awareness that small effect sizes
can be considered important. She adds that action on several aspects
which show small effects may, in combination, prove more influential
than focussing on one aspect which may have a larger effect.

Parker suggests three issues educational researchers need to consider
with regard to policy makers.

1 Policy makers are human and are therefore receptive to having
their prejudices confirmed and resistant to having them
challenged.

2 They all know of historical examples where researchers lied to
them or got it wrong, from Cyril’s Burt’s falsified work on
identical twins, through the flawed interpretation of early years
research which appeared to show that nursery education hindered
educational attainment; to the mischievous use, by Chris
Woodhead, of Ofsted data to claim that small class size made no
difference to outcomes.

3 When politicians talk about ‘evidence based policy making’ they

mean more than the output of educational research.

Parker states that educational research must be of greatest benefit to
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policy making when it can challenge erroneous belief, settle debate
between differing policy options or offer insight into possible new
approaches to old and intractable issues. On the other hand, policy
makers require the output from the research community to be both clear
and persuasive. He stresses that clear should not be interpreted as
‘simple’. The real world complexity in educational research should be
retained and demands for simplification should be resisted as “this could
lead to the simplistic’. Parker recognises the benefits of considering
effect sizes and wonders whether a combination of better research design
and a more consistent approach to effect size considerations would have
enabled past research to reach more persuasive conclusions.

Parker poinis also to the desirability of promoting synthesis and the
accumulation of knowledge through the combination and comparison of
the results of different studies. He agrees with Goldstein about the
necessity for practitioners and policy makers to take responsibility for
the necessary contribution of value/significance measures to research
findings. Similarly, Melhuish stresses that a key value of effect sizes is
the opportunity they provide for comparisons on the size effects for
different variables on one outcome, between one variable and different
outcomes or, most importantly, between studies.

McNiece and Bidgood suggest that measures of effect size could be
calculated to assess the impact of explanatory variables on attainment at
successive time points. The use of effect size in longitudinal analysis
may help to identify subtle changes in the associations between
explanatory variables and educational attainment over time and allow for
monitoring the impact of certain factors on progress and development
throughout the educational career.

11.3 Summing up

A continuing problem in educational research is that of interpreting the
results of statistical analysis in such away that the impact of
interventions on educational outcomes can be assessed. Effect sizes has
been suggested as the best approach, but its use has been patchy and
underlying issues are still debated.

It emerged from the discussion that there is no best effect size measure.

Different measures of size effects are required for different studies with
different methodologies and different questions. However, it was also
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highlighted that more agreement on the best approaches to calculate
effect sizes under different circumstances is needed.

Earlier in this chapter it was also indicated that relying on the p-value
alone when presenting results may be inappropriate and could lead to
misreporting. There was a core agreement regarding the need for
practitioners and policy makers to combine value/weight/significance
measures to research findings. Despite such a general agreement,
comments were also made that the role of effect sizes should not be over
stressed. The adequacy of models, quality of data and controls made will
have a significant impact on the calculated effect size. Good research
should address all aspects and publish a range of statistics to enable
proper evaluation of any research and interpretation of results.

it was also noted that policy makers and practitioners require the output
from the educational research establishments to be both clear and
persuasive. Besides, caution is required against over complicated
analysis without justification. However, it was also pointed out that
stimple models may need to be confirmed by more complex models
which take into consideration more background factors and
relationships.

Overall, it was felt that the seminar will have played an important part in
clarifying effect sizes, their use in reporting research findings and a
consistent approach in their calculation.
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lan Schagen and Karen Elliot

‘But what does it mean?’ was chosen as the title of this volume, not
because we expected to answer this question, but because it encapsulates
the concerns often expressed by the users of educational research that
they are unable to see the practical and policy wood for the
methodological trees. This is a long-term issue, but we believe these
proceedings have facilitated the ongoing process of debate, research and
theoretical and practical advancement in this field of enquiry. As a
starting point for the next stage of the process, it is useful to summarise
the key issues that arose and provide indicators of potential areas for
further developmenis.

In some ways, the concept of ‘effect size’ has been appropriated by
educational research from other ficlds where it is more commonly
understood, in a similar way to that in which ‘value added’ was lifted
from economics some vyears earlier. The idea of an effect size is more
familiar to those working in areas where controlled experiments are
employed, such as clinical trials — with due respect to Fitz-Gibbon
(2004), social and educational research does not commonly employ such
methods, nor are they likely to replace surveys and the analysis of
administrative datasets in the near future. So the challenge for
educational researchers and others is to interpret this concept in ways
which are relevant to our field. As discussed in earlier chapters, the
terminology itself is slightly unfortunate, as ‘effect size’ has overtones of
causality which are more appropriate to experimental findings than to
those obtained from surveys or modelling naturally occurring variation.
It might have been better to have coined a new phrase to express such a
statistic within this particular context — something like ‘standardised
coefficients’ — but this is probably not now an option.

So in what situations might this concept be used within educational
research? A number of potential applications have been identified in this
publication, including:

1 To enable coefficients of different variables within complex
models of educational outcomes to be directly compared with each
other in terms of ‘strength’ or ‘importance’.
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2 To enable such measures to be compared across different studies
in ways which are independent of the exact units used in each.

3 To enable findings from complex analyses to be presented to a
non-technical audience (such as policy-makers) in ways which are
accessible and speak directly to their agendas.

The first two purposes are particularly important but give rise to a fairly
substantial number of technical questlom some of which have been
addressed in this volume.

e What is the correct estimate of standard deviation to use in computing
effect sizes?

e Should there be a factor of 2, or I, or something in between, to
multiply the standard deviation?

e How should effect sizes for binary and non-binary variables be
compared?

e How are confidence intervals for effect sizes calculated?

e How can the concept be extended to other situations, for example as
discussed in earlier chapters variance ratios (Strand) and interaction
terms (Schagen)?

But in all this, we must not forget Godfrey’s wamning that effect size is a
‘pseudo-concept’, not a direct measure of an underlying reality but a way
of expressing the results of our (inevitably partial and incomplete)
models of that reality. Complex and technical discussions are an
important part of the professional remit of researchers and statisticians,
but they are not the only part of that task. If the results from analyses are
not conveyed in ways that speak clearly to the intended audience, then
we have failed.

For this reason the search for clear but valid ways of presenting results
must assume one of the highest priorities. Examples have been produced
in the papers in this volume of how this might be done, but there is
obviously a great deal yet to do in terms of improving, standardising and
disseminating best practice in presentation. As part of this, it is possible
that the pendulum may swing away from the dimensionless purity of
effect sizes towards measures which are expressed in more natural units,
The search for units which carry broad currency across the educational
field needs to continue, together with the development of robust ways of
converting modelling results into such units.
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In summary, we hope that the seminar and this publication are the
beginning of a process in educational research which will bring together
a range of different practices in the search for some common standards
in the presentation of complex modelling results to answer the question
‘But what does it mean?’
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Age-standardised score

Test scores adjusted to give values which are evenly distributed about a
fixed value (often 100), and which take account of the age of the
mdividuals taking the test.

Binary variables

A variable that can take only two values, representing, for example, sex,
absentees etc. Also known as Dichotomous variables.

Causality

The relationship between cause and effect. The principle that all events
have sufficient canses.

Coefficient

In regression analysis, the estimated relationship between the outcome
measure and one of the background variables, expressed as the change in
the value of the outcome associated with one unit change in the
background variable.

Confidence interval

No statistical estimate is ever totally accurate, but the degree of accuracy
will depend on a number of factors, mcluding the amount of data on
which it is based. If we estimate something, say the overall national mean
score on a test based on a sample of individuals, we may compute a
confidence interval that is a range of values, enclosing the best estimate,
which has a specified probability of containing the true value. For
example, if we say that a 95% confidence interval for the mean score is
15.7 to 16.1, this implies that if we repeated the whole exercise lots of
times with different samples, then 95 times out of 100 the true national
mean score would lie inside the confidence interval we give. Obviously,
the higher the confidence level we want, the wider the interval we must
specify.

Continuous variable

A variable which is considered to be measurable on a coniinuous scale
e.g. height, weight, test scores etc.
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Correlations

A measure of association between two measurements, ¢.g. between size
of school and the mean number of GCSE passes at grades A, B & C
obtained by each pupil. A positive correlation would occur if the number
of passes increased with the size of the school. If the number of passes
decreased with size of school there would be a negative correlation.
Correlations range from -1 to +! (perfect negative to perfect positive
correlations); a value of zero indicates no linear association between the
twO measures.

Dichotomous variables

A variable that can take only two values, representing, for example, sex,
absentees etc. Also know as Binary variables.

Effect size

A statistic, often abbreviated to D or delta (A), indicating the difference in
outcome for the average subject who received a treatment from the
average subject who did not. This statistic is often used in meta-analysis,

Explanatory variables

Variables which can be used to explain an outcome. Also known as
background or independent variables.

Likert Scale

This scale measures the extent to which a person agrees or disagrees with
a question.

Median

The central value in a set of data, such that half the cases lie below and
half above that value. It is less affected by extreme values than the mean
as a measure of the ‘average’ of a dataset.

Meta-analysis

Meta-analysis is the combination of data from several studies to produce
a single estimate. From the statistical point of view, meta-analysis is a
straightforward application of multifactorial methods.

Multilevel modelling/analysis

Multifevel modelling is a recent development of linear regression which
takes account of data that is grouped into similar clusters at different
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levels. For example, individual pupils are grouped into year groups or
cohorts, and those cohorts are grouped within schools. There may be more
in common between pupils within the same cohort than with other
cohorts, and there may be elements of similarity between different cohorts
in the same school. Multilevel modelling allows us to take account of this
hierarchical structure of the data and produce more accurate predictions,
as well as estimates of the differences between pupils, between cohorts,
and between schools. (Multilevel modelling is also known as hierarchical
linear modelhing).

Multivariate analysis

The analysis of data, which is multivariate in the sense that each member
bears the values of p variates.

Noise

A series of random disturbances. Noise results in the possibility of a
signal sent, x, being different from the signal received, y.

Normalised scores

In the analysis of data it is often desirable to convert each sct of original
scores to some standard scale. This process is known as the normalisation
of scores.

Null hypothesis

This term relates to a simple hypothesis of no change or difference, as
distinet from the alternative hypothesis of a significant difference that is
being tested.

Percentiles

The set of partition values which divide the total frequency into one
hundred equal parts.

p-value

The probability that, given the null hypothesis, a particular statistic takes
a value at least as extreme as that observed. Often for a statistical test we
require that a p-value be smaller than some fixed value, if we are to reject
the null hypothesis.

Quartiles

Numerical values which divide a dataset into four parts with equal
numbers in each, The first quartile is such that 25% of the data lies below
it and 75% above; the third quartile has 75% below and 25% above. The
second quartile is equivalent to the median.
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Regression analysis (linear)

This is a technique for finding a straight-line relationship which allows us
to predict the values of some measure of interest (‘dependent variable’)
given the values of one or more related measures. For example, we may
wish to predict schools’ GCSE performance given some background
factors, such as free school meals and school size (these are sometimes
called ‘independent variables’). When there are several background
factors used, the technique is called multiple linear regression. If just a
single background factor is used to predict, we have simple linear
regression, and the results may be plotted as a straight line on a graph.

Reliability

The ‘reliability’ of an outcome is a measure of the extent to which it is due
to permanent systeratic effects, and therefore persists from sample to
sample.

Standard deviation

Standard deviation is a measure of the spread of some quaniity within a
group of individuals. If the quantity is distributed approximaicly
Normally, we would expect about 95% of the individuals to be within 2
standard deviations either side of the mean value,

Statistical inference
The extension of sample results to a larger population.

Statistical significance

We say that there is a statistically significant difference between two
groups in some quantity if the probability of that difference arising by
chance is less than a preset value (e.g. 5%). Similarly, we say that there is
a significant relationship between two variables if the observed results
have a low probability of arising by chance, which is by random
fluctuations when the two variables are really unrelated.

Variability
The quality of being likely to change or vary over time; lack of uniformity.

Variance
A measure of variability in data (the square of the standard deviation).
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