Mapping of the NFER termly mathematics tests to the Ready-to-progress criteria

INTRODUCTION

In June 2020, the Department for Education, in conjunction with the National Centre for Excellence in the Teaching of Mathematics, released non-statutory guidance designed to "make effective use of the national curriculum to develop primary school pupils' mastery of mathematics". This guidance ${ }^{1}$ highlights core concepts from the national curriculum that pupils need to master in order to progress to higher learning within the next curriculum year. It also shows the progression of each skill from year 1 to year 6 . Once a child has mastered a skill or concept from their current year group, they should be ready to move on to the next year's skill or concept. Likewise, they need to have mastered the previous year's skill or concept before they can access the curriculum content from their current year group. These core skills and concepts are called the "Ready-to-progress (RTP) criteria" and are divided into Number and place value, Number facts, Addition and subtraction, Multiplication and division, Fractions, and Geometry. It is important to note that there is not a discrete RTP criterion for every area in the national curriculum; for example, "measurement and statistics are integrated as applications of number criteria, and elements of measurement that relate to shape are included in the geometry strand".

The National Foundation for Educational Research (NFER) has taken the RTP criteria for each year group and identified which questions in our termly tests address each of the criteria. We have also highlighted the prerequisite criteria (from previous year groups) that children need to have mastered in order to access the mathematical concept from their current year group. Our expectation is that teachers and school leaders will use the RTP criteria in conjunction with questions from NFER's termly assessments to identify gaps in learning and to provide targeted support to enable pupils to access progressively more difficult areas of the curriculum.

[^0]
How to use the tables

The image below shows part of an example table and explains the information that is provided.

We suggest that teachers might like to use the tables of information in the following way:

Using the table, identify the criterion that you want to analyse (e.g.3NF-1) and therefore the questions that provide evidence about pupils' performance on that criterion (i.e. Year 1 Spring Paper 1 question 6, Year 3 Autumn Reasoning Paper 2 question 14, Year 3 Spring Reasoning Paper 2 question 19, and so on).

Locate the relevant questions in the Question Level report in the NFER Test Analysis Tool. Note, the questions are listed with the youngest year group given first and then by term (Autumn, Spring and Summer), paper (Paper 1 and Paper 2 in year 1; Arithmetic and Reasoning [Paper 1 then Paper 2] for years 2-6) and finally by question order.

Alternatively, locate the relevant questions in the completed pupil booklets. The online tool will enable a quicker review of how well a large group of pupils performed on the questions but the booklets will reveal pupil errors.

Analyse performance on those questions to make a judgement on whether that particular RTP criterion has been mastered by a pupil or group of pupils.

If the judgement is that the RTP criterion is not yet mastered, it may be that the pupil or group of pupils is not yet secure with the prerequisite criterion, in this example, 2NF-1. Note, just because a pupil cannot do one question associated with a criterion, it does not necessarily mean that they have not mastered that criterion. The evidence should be viewed as a whole, perhaps alongside evidence from other classwork or observations.

This is just one example of how the tables may be used but we anticipate that they might be used by different school staff in a variety of ways, either in conjunction with the Question Level Report found in the NFER Tests Analysis Tool, with pupil responses from the test papers themselves, or with in-house assessment tools.

We envisage that teachers will be particularly interested in seeing how their pupils have performed with regards to specific RTP criteria when it comes to reporting on pupil attainment at the end of the year. Following the steps above, teachers can analyse the test data to decide whether or not pupils have understood the knowledge or acquired the skills set out in the criteria and provide next steps in learning to parents or the pupils' next teacher. Furthermore, they may reflect on their own practice, considering whether there are other ways to approach a topic or different resources that they may use with pupils next year.

Teachers could also use the tables at the start of the school year, or before teaching a new curriculum area, to check that pupils have appropriate understanding before introducing new content. This way they could identify any gaps in knowledge across a class that could be a barrier for further learning and provide a recap or input to ensure pupils are at an appropriate starting point in advance. Alternatively, analysis of performance against the RTP criteria may reveal weaknesses for individual pupils who might require specific intervention in order to progress their learning in mathematics.
Mathematics lead teachers or senior leaders can look at cohort and school-wide data to determine if there are any particular curriculum areas where there is a wider need for intervention, and use that to provide CPD, supporting teachers by either developing their knowledge or their teaching approaches in these areas. They can also look at school-wide areas of weakness and use this to decide on a termly focus, for example.

If teachers want to perform individual analyses on a smaller number of pupils, perhaps those who are not achieving the age-related expectations, then rather than using the NFER Tests Analysis Tool they can look at the pupil responses within a test. Using the evidence directly from the tests, teachers will still be able to evaluate which of the RTP criteria the pupil has not mastered and therefore the knowledge gaps that are potentially holding back their understanding and learning. Again, this would enable targeted intervention to address the specific area of misunderstanding.

Teachers can use previous years' test questions as a teaching resource to really target gaps in learning. Note, although it may be insightful for pupils to see test questions and carry out class activities relating to them, such as discussing why a response is not creditworthy, teachers should not show pupils any questions from tests in later terms or year groups. Doing so would risk making the standardised scores of the later tests inaccurate and unreliable.

Further details

Some test questions are allocated to more than one RTP criterion, and, if the question does not primarily assess that criterion (because there is a criterion with a closer match), the row in the table is shaded. There are also some occasions where a pre-requisite criterion is not from the year group directly below, for example, 3NF-2 has a prerequisite of 1NF-2. We have clearly indicated this in the tables.

Not every question in our tests has been mapped to the RTP criteria. There are several reasons for this, one of which is where the question requires two mathematical skills or concepts to be used. For example, statistics questions may involve both interpretation of a table or diagram as well as arithmetic procedures. Pupils could get the question wrong either through misinterpretation of the data or because they are unable to understand the requirements and carry out the maths needed to answer the question.

Some questions assess a curriculum area from one year group but have been mapped to a different year group's RTP criterion. For example, questions involving converting money have been mapped to 5NPV-5 (a year 5 criteria), which states pupils should be able to "convert between units of measure, including common decimals and fractions", even though converting measures falls into year 4 of the national curriculum. This is because converting money between pounds and pence always requires the understanding of tenths and hundredths, whereas converting length or mass may not. Questions assessing measures conversions using whole numbers have been mapped to $3 N F-3$ or 4NF-3. Class teachers may therefore need to look at previous years' test questions to assess whether or not a child has met a criterion. Subject leaders reviewing knowledge of a RTP criterion across a school may need to refer to questions in tests from higher years than the RTP criterion. This is because some tests, particularly the autumn tests and those for year 6, assess curriculum content from earlier curriculum years. Where it is necessary to refer to a test of a different year group, we have clearly indicated this in the mapping tables.

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$	$\frac{-1}{3}$	O O D D	0 \sim 0 0 0 0 0	Prerequisite criteria
1NPV-1 Count within 100, forwards and backwards, starting with any number.	1	Spring	1	1	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning.
	1	Spring	1	10	
	1	Spring	1	19	
	1	Spring	2	2	
	1	Summer	1	15a	
	1	Summer	2	2	
	1	Summer	2	4	
	2	Autumn	A	5	
	2	Autumn	R	9b	
	2	Spring	A	2	
	2	Spring	R	3	
	1	Spring	1	5	
	1	Spring	1	13	
	1	Spring	1	18	
	1	Spring	1	20	
	1	Summer	1	14	
	1	Summer	1	19	
1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and =	1	Spring	1	11	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning.
	1	Summer	1	15b	
	1	Summer	1	15c	
	2	Autumn	R	9a	
	3	Spring	R2	16	
1NF-1 Develop fluency in addition and subtraction facts within 10.	1	Spring	1	3	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning.
	1	Spring	1	13	
	1	Spring	2	1	
	1	Spring	2	7	
	1	Summer	1	3	
	1	Spring	1	16	
	1	Summer	1	7	
	1	Summer	1	9	
	3	Autumn	R1	7	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\sim}{2}}$	$\frac{-1}{3}$	O O O 1	0 $\stackrel{0}{0}$ \sim \sim 1	Prerequisite criteria
1NF-2 Count forwards and backwards in multiples of 2,5 and 10 , up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.	1	Spring	1	4	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning
	1	Spring	1	15	
	1	Spring	2	4	
	1	Summer	1	1	
	2	Autumn	R	3	
	2	Autumn	R	13	
	2	Spring	R	2	
	1	Spring	1	21	
	1	Spring	1	24	
	1	Spring	2	12	
	1	Summer	1	21	
	2	Autumn	R	27	
1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	1	Summer	1	7	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning.
	1	Summer	1	9	
	2	Autumn	A	6	
	2	Autumn	R	2	
	2	Spring	R	9	
1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals (=) symbols, and relate additive expressions and equations to real-life contexts.	1	Summer	1	18	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning
	3	Autumn	R1	1	
1G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.	1	Spring	2	9	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning
	1	Summer	1	14	
1G-2 Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations.	2	Spring	R	19	N/A Please refer to the Early Years Foundation Stage Curriculum for an indication of prior mathematics learning.

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\xrightarrow{\text { ® }}$	$\frac{-1}{3}$	O O O D	0 $\stackrel{0}{0}$ 0 0 0	Prerequisite criteria
2NPV-1 Recognise the place value of each digit in twodigit numbers, and compose and decompose two-digit numbers using standard and nonstandard partitioning.	2	Autumn	A	1	None
	2	Autumn	R	7	
	2	Spring	A	4	
	3	Autumn	A	1	
	3	Spring	R1	5	
	2	Spring	R	6	
	2	Spring	R	9	
	3	Spring	R2	8	
2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 .	2	Autumn	A	9	1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and =
	2	Autumn	R	1	
	2	Autumn	R	8	
	2	Autumn	R	11a	
	2	Autumn	R	11b	
	2	Spring	A	23	
	2	Spring	R	1	
	2	Spring	R	6	
	3	Autumn	R1	11	
	3	Spring	R1	3	
	3	Spring	R2	12	
	3	Summer	R2	12	
	4	Spring	R1	2	
2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice.	1	Summer	1	7	1NF-1 Develop fluency in addition and subtraction facts within 10.
	1	Summer	1	9	
	3	Autumn	R1	7	
	3	Spring	R2	16	
2AS-1 Add and subtract across 10.	1	Spring	1	16	None
	1	Spring	1	20	
	1	Summer	1	2	
	1	Summer	1	4	
	1	Summer	1	8	
	1	Summer	1	12	
	1	Summer	1	16	
	1	Summer	1	19	
	2	Autumn	A	2	
	2	Autumn	R	5	
	2	Autumn	R	10	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\begin{aligned} & \widehat{\infty} \\ & \stackrel{1}{\rightleftharpoons} \end{aligned}$	$\frac{-1}{3}$	O		Prerequisite criteria
2AS-1 cont. Add and subtract across 10.	2	Autumn	R	29	None
	2	Spring	A	1	
	2	Spring	R	18	
	2	Spring	R	22	
	3	Autumn	A	15	
	1	Spring	1	10	
2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?".	2	Autumn	R	24	None
	2	Spring	R	12	
	2	Spring	R	20	
	5	Spring	R2	5	
	5	Spring	R2	12b	
	2	Spring	R	33	
2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a twodigit number.	1	Spring	1	5	None
	1	Spring	1	7	
	1	Spring	1	9	
	1	Spring	2	3	
	1	Spring	2	8	
	1	Spring	2	14	
	1	Summer	1	6	
	1	Summer	1	23b	
	1	Summer	2	1	
	1	Summer	2	5	
	1	Summer	2	6	
	1	Summer	2	7	
	2	Autumn	A	3	
	2	Autumn	A	10	
	2	Autumn	R	18	
	2	Autumn	R	21	
	2	Spring	A	6	
	2	Spring	A	11	
	2	Spring	R	7	
	3	Spring	A	8	
	3	Spring	R1	1	
	1	Spring	1	1	
	2	Spring	R	28	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	® $\stackrel{\text { ® }}{\sim}$ \sim	$\frac{-1}{3}$	O O O D		Prerequisite criteria
2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers.	1	Spring	1	18	None
	1	Summer	2	3	
	1	Summer	2	14	
	2	Autumn	A	11	
	2	Autumn	A	16	
	2	Autumn	A	19	
	2	Autumn	R	14	
	2	Autumn	R	27	
2AS-4 cont. Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers.	2	Spring	A	8	None
	2	Spring	A	14	
	2	Spring	A	15	
	2	Spring	A	17	
	2	Spring	A	18	
	2	Spring	A	21	
	2	Spring	R	33	
	3	Autumn	A	6	
	3	Autumn	A	19	
	3	Autumn	R1	13	
	4	Spring	R2	1	
	5	Autumn	R2	11	
	5	Spring	R2	12b	
2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables.	1	Spring	1	24	None
	1	Spring	2	12	
	1	Summer	2	10	
	1	Summer	2	12a	
	1	Summer	2	12b	
	2	Autumn	R	16	
	2	Autumn	R	22	
	2	Autumn	R	25	
	2	Spring	A	5	
	2	Spring	A	7	
	2	Spring	A	12	
	2	Spring	A	13	
	2	Spring	A	20	
	2	Spring	R	4	
	2	Spring	R	11	
	2	Spring	R	15	
	2	Spring	R	17	
	2	Spring	R	24	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	-	$\frac{-1}{3}$	O O D D		Prerequisite criteria
2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division).	1	Spring	1	21	None
	1	Spring	2	15	
	1	Summer	1	21	
	1	Summer	2	8	
	2	Autumn	R	20	
	2	Spring	R	13	
	2	Spring	R	21	
	2	Spring	R	25	
	2	Spring	R	29	
	2	Spring	A	20	
2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties.	2	Autumn	R	12	1G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.
	2	Spring	R	31	
	4	Spring	R1	9	
	4	Spring	R2	18a	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\sim}{\sim}}$	$\frac{-1}{3}$	\%	$\begin{aligned} & 0 \\ & \frac{1}{0} \\ & 0 \\ & \\ & \stackrel{0}{0} \end{aligned}$	Prerequisite criteria
3NPV-1 Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 ; apply this to identify and work out how many 10s there are in other three-digit multiples of 10 .	2	Spring	R	24	None
3NPV-2 Recognise the place value of each digit in threedigit numbers, and compose and decompose three-digit numbers using standard and nonstandard partitioning.	3	Autumn	A	2	2NPV-1 Recognise the place value of each digit in twodigit numbers, and compose and decompose two-digit numbers using standard and nonstandard partitioning.
	3	Autumn	A	4	
	3	Autumn	A	9	
	3	Autumn	A	14	
	3	Autumn	A	18	
	3	Autumn	R1	4	
	3	Autumn	R1	17a	
	3	Autumn	R1	17b	
	3	Autumn	R2	1	
	3	Autumn	R2	4	
	3	Autumn	R2	16	
	3	Autumn	R2	20	
	3	Spring	A	4	
	3	Spring	A	6	
	3	Spring	A	7	
	3	Spring	A	11	
	3	Spring	A	15	
	3	Spring	A	18	
	3	Spring	R2	1	
	3	Summer	A	5	
	3	Summer	A	7	
	3	Summer	A	9	
	3	Summer	A	13	
	3	Summer	R1	8	
	3	Summer	R1	12	
	3	Summer	R2	1	
	4	Autumn	R2	10	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$	$\frac{-1}{3}$	D O O D	0 $\substack{0 \\ 0 \\ 0 \\ \hline \\ 0 \\ 0}$	Prerequisite criteria
3NPV-3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10 .	3	Autumn	A	5	2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 .
	3	Autumn	A	21	
	3	Autumn	R2	7	
	3	Autumn	R2	19b	
	3	Spring	A	2	
	3	Spring	R1	7	
	3	Spring	R2	3	
	3	Spring	R2	7	
	3	Summer	A	2	
	3	Summer	R1	1	
	3	Summer	R2	3	
	3	Summer	R2	21	
	4	Autumn	A	11	
	4	Autumn	R1	4	
	4	Spring	A	16	
	4	Spring	R1	8	
	4	Summer	R1	13	
	3	Summer	A	27	
	4	Autumn	R1	5	
3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts.	2	Spring	R	14	None
	3	Spring	A	12	
	3	Spring	R2	9	
	3	Summer	A	4	
	3	Summer	R1	2	
	3	Summer	R1	17	
	3	Summer	R1	22	
	3	Summer	R2	20	
	4	Autumn	R1	1	
	4	Autumn	R2	21	
	5	Autumn	R2	4	
3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.	1	Spring	1	6	2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice.
	3	Autumn	R2	14	
	3	Spring	R2	19	
	3	Autumn	R1	19	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\text { ¢ }}$	$\frac{-1}{3}$	O O O D	0 0 0 0	Prerequisite criteria
3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.	2	Autumn	A	8	1NF-2 Count forwards and backwards in multiples of 2,5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.
	2	Autumn	A	14	
	2	Autumn	A	17	
	2	Autumn	A	18	
	2	Spring	A	7	
	2	Spring	A	22	
	2	Spring	A	25	
	3	Autumn	A	8	
	3	Autumn	A	12	
	3	Autumn	A	20	
	3	Autumn	A	25	
	3	Autumn	A	28	
	3	Autumn	R1	2	
	3	Autumn	R1	14	
	3	Autumn	R1	16	
	3	Autumn	R2	19a	
	3	Spring	A	1	
	3	Spring	A	5	
	3	Spring	R1	4	
	3	Spring	R1	5	
	3	Spring	R1	9	
	3	Summer	A	3	
	3	Summer	A	16	
	3	Summer	A	21	
	3	Summer	A	25	
	3	Summer	R1	18	
	3	Summer	R2	5	
	3	Summer	R2	8	
	3	Summer	R2	16	
	3	Summer	R2	18	
	4	Spring	A	1	
	1	Summer	1	5	
	1	Summer	1	13	
	2	Autumn	R	15	
	2	Autumn	R	21	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\text { ¢ }}$	$\frac{-1}{3}$	O O ¢ D		Prerequisite criteria
3NF-2 cont. Recall multiplication facts, and corresponding division facts, in the $10,5,2,4$ and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.	2	Autumn	R	24	1NF-2 Count forwards and backwards in multiples of 2,5 and 10 , up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.
	2	Spring	A	5	
	2	Spring	A	12	
	2	Spring	A	13	
	2	Spring	R	21	
	3	Autumn	R2	14	
	4	Spring	R2	1	
	5	Summer	R2	13	
3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).	3	Spring	R2	20	None
	4	Spring	R1	11	
	6	Autumn	A	10	
	3	Autumn	A	26	
	3	Autumn	A	30	
	3	Spring	A	28	
	3	Summer	A	14	
	3	Summer	A	22	
	4	Autumn	R1	25a	
	5	Spring	A	14	
	5	Spring	R2	20a	
3AS-1 Calculate complements to 100.	3	Autumn	A	24	None
	3	Summer	R2	13	
	5	Autumn	R1	2 b	
3AS-2 Add and subtract up to three-digit numbers using columnar methods.	3	Autumn	A	11	None
	3	Autumn	A	13	
	3	Autumn	A	17	
	3	Autumn	A	23	
	3	Autumn	A	27	
	3	Spring	A	3	
	3	Spring	A	9	
	3	Spring	A	16	
	3	Spring	A	19	
	3	Spring	A	22	
	3	Spring	A	27	
	3	Summer	A	1	
	3	Summer	A	6	
	3	Summer	A	8	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$	$\frac{-1}{3}$	\%	$\begin{aligned} & 0 \\ & \frac{1}{0} \\ & 0 \\ & \\ & \stackrel{0}{0} \end{aligned}$	Prerequisite criteria
3AS-2 cont. Add and subtract up to three-digit numbers using columnar methods.	3	Summer	A	11	None
	3	Summer	A	18	
	3	Summer	A	24	
	3	Summer	A	27	
	3	Summer	A	29	
	3	Summer	R1	7	
	3	Summer	R1	14	
	3	Summer	R2	6	
	3	Summer	R2	17	
	4	Autumn	A	1	
	4	Autumn	A	3	
	4	Autumn	A	12	
	4	Autumn	A	14	
	4	Autumn	R1	17	
	4	Spring	A	11	
	4	Spring	A	25	
	4	Spring	R2	19	
	4	Summer	A	2	
	4	Summer	A	21	
	4	Summer	R1	15	
	4	Summer	R2	18	
	5	Autumn	R2	22	
3AS-2 cont. Add and subtract up to three-digit numbers using columnar methods.	6	Autumn	A	1	None
	6	Autumn	A	3	
	6	Autumn	A	11	
	6	Spring	A	1	
	6	Spring	A	5	
	6	Spring	R1	2	
	3	Spring	R1	8	
	3	Spring	R2	20	
	4	Autumn	R1	13	
	4	Autumn	R1	19	
	4	Autumn	R1	25b	
	4	Spring	R2	6	
	6	Spring	R1	21	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\begin{aligned} & \widehat{\infty} \\ & \stackrel{N}{\sim} \end{aligned}$	$\frac{-1}{3}$	$\begin{aligned} & \text { D } \\ & \text { O } \\ & \underline{\mathbb{D}} \end{aligned}$		Prerequisite criteria
3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.	2	Autumn	A	7	None
	2	Autumn	A	13	
	2	Spring	A	19	
	2	Spring	R	27	
	2	Spring	R	32	
	3	Autumn	R2	5	
	3	Autumn	R2	8	
	3	Autumn	R2	13	
	3	Autumn	R2	17	
	3	Spring	A	25	
	3	Spring	R1	13	
	3	Spring	R2	8	
	3	Spring	R2	13	
	3	Summer	R1	4	
	4	Autumn	A	17	
	4	Autumn	A	27	
	4	Autumn	R2	24	
	4	Spring	R2	20	
3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.	4	Summer	R2	21	None
	5	Autumn	R2	11	
	5	Spring	R1	2	
	5	Spring	R2	5	
	5	Summer	R2	13	
	6	Autumn	A	6	
	2	Spring	A	6	
	2	Spring	A	9	
	2	Spring	A	15	
	4	Summer	R2	18	
	5	Autumn	R2	10	
	6	Spring	A	3	
	6	Spring	A	12	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$	$\frac{-1}{3}$	O O D D		Prerequisite criteria
3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.	3	Autumn	A	16	None
	3	Autumn	R1	1	
	3	Autumn	R1	10	
	3	Autumn	R1	19	
	3	Autumn	R2	10	
	3	Spring	R1	16	
	3	Spring	R2	4	
	3	Summer	R2	10	
	4	Autumn	R1	13	
	2	Spring	R	17	
	3	Autumn	A	28	
	3	Summer	R1	16	
	4	Summer	R1	9	
3F-1 Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.	1	Spring	1	23	None
	1	Spring	2	11	
	1	Summer	1	24	
	2	Autumn	A	4	
	2	Autumn	A	15	
	2	Autumn	R	26	
	2	Spring	R	8	
	3	Autumn	A	7	
	3	Autumn	R1	5	
	3	Autumn	R2	3	
	3	Autumn	R2	9	
	3	Spring	R2	2 b	
	3	Spring	R2	6	
	3	Summer	R1	3	
	3	Summer	R1	9	
	3	Summer	R2	2	
	4	Autumn	R1	16	
	4	Autumn	R2	5	
	4	Autumn	R2	15a	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	® ¢ \sim	$\frac{-1}{3}$	O O O D		Prerequisite critería
3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).	1	Spring	1	8	None
	1	Summer	1	5	
	1	Summer	1	10	
	1	Summer	1	13	
	2	Autumn	A	12	
	2	Autumn	A	20	
	2	Autumn	R	15	
	2	Spring	A	16	
	2	Spring	A	24	
	2	Spring	R	28	
	3	Autumn	A	3	
	3	Spring	A	14	
	3	Spring	A	20	
3F-2 cont. Find unit fractions of quantities using known division facts (multiplication tables fluency).	3	Spring	R1	18	None
	3	Spring	R2	11	
	3	Spring	R2	21	
	3	Summer	A	28a	
	3	Summer	A	28b	
	4	Spring	R2	22a	
	6	Autumn	A	32	
3F-3 Reason about the location of any fraction within 1 in the linear number system.	3	Spring	A	29	None
	3	Spring	R1	15	
	3	Summer	A	20	
	3	Summer	R1	6	
	3	Summer	R1	21	
	3	Summer	R2	22	
	5	Spring	R1	20	
3F-4 Add and subtract fractions with the same denominator, within 1.	3	Autumn	A	22	None
	3	Autumn	A	29	
	3	Autumn	R2	22	
	3	Spring	A	10	
	3	Spring	A	17	
	3	Spring	A	26	
	3	Summer	A	12	
	3	Summer	A	17	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	® $\stackrel{1}{\sim}$ \sim	$\frac{-1}{3}$	O O D D	$$	Prerequisite criteria
	3	Summer	A	26	
	3	Summer	R2	9	
	4	Autumn	A	8	
	4	Autumn	A	15	
	4	Autumn	A	34	
	4	Autumn	R1	11	
	4	Spring	A	5	
	4	Spring	A	18a	
	4	Spring	A	18b	
	4	Spring	A	26	
	4	Summer	A	18	
3F-4 cont.	4	Summer	A	27	None
denominator, within 1 .	4	Summer	R2	5	
	5	Autumn	A	7	
	5	Autumn	A	17	
	5	Autumn	R1	13	
	6	Autumn	A	8	
	4	Autumn	R1	26	
	5	Spring	R1	13	
	5	Summer	A	36	
	6	Autumn	A	19	
	6	Autumn	R1	7	
	6	Autumn	R1	19	
	6	Spring	A	9	
3G-1 Recognise right angles as a property of shape or a description of a turn, and identify right angles in 2D shapes presented in different orientations.	3	Spring	R1	6	2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties.
	3	Summer	R2	7	
3G-2	3	Spring	R1	11	1G-2
Draw polygons by joining marked points, and identify parallel and perpendicular sides.	3	Summer	R2	7	Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating
	6	Autumn	R2	2	shapes to place them in particular orientations.
	6	Spring	R2	11	
	3	Autumn	R2	18	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	® ¢ \sim	$\frac{-1}{3}$	O O D D		Prerequisite criteria
4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 .	4	Spring	A	22	3NPV-1 Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10; apply this to identify and work out how many 10s there are in other three-digit multiples of 10.
	5	Autumn	A	34	
	6	Autumn	R2	5	
4NPV-2 Recognise the place value of each digit in fourdigit numbers, and compose and decompose four-digit numbers using standard and nonstandard partitioning.	4	Autumn	A	6	3NPV-2 Recognise the place value of each digit in threedigit numbers, and compose and decompose three-digit numbers using standard and nonstandard partitioning.
	4	Autumn	R2	7	
	4	Spring	A	2	
	4	Spring	A	22	
	4	Spring	R1	7	
	4	Summer	A	1	
	4	Summer	R1	1	
	4	Summer	R1	2a	
	4	Summer	R1	2b	
	4	Summer	R2	1	
	5	Autumn	R2	10	
	6	Autumn	R1	1	
	6	Spring	A	3	
	6	Spring	A	12	
	6	Spring	R1	1	
	6	Autumn	A	6	
4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	3	Autumn	A	10	3NPV-3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10 .
	4	Autumn	A	16	
	4	Autumn	R1	14	
	4	Autumn	R2	2	
	4	Spring	R2	3	
	4	Spring	R2	21	
	4	Summer	A	4	
	4	Summer	A	10	
4NPV-3 cont. Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	4	Summer	A	17	3NPV-3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10 .
	4	Summer	R1	18	
	4	Summer	R1	23	
	5	Autumn	A	1	
	5	Summer	A	3	
	5	Summer	R2	14a	
	3	Spring	R1	2	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{1}{\sim}}$	$\frac{-1}{3}$	O O O ¢	0 0 0 0 0 1 1	Prerequisite criteria
4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.	4	Spring	A	10	3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts.
	4	Summer	A	3	
	5	Spring	R1	7 a	
	5	Spring	R2	12a	
4NF-1 Recall multiplication and division facts up to 12 $\times 12$, and recognise products in multiplication tables as multiples of the corresponding number.	3	Spring	A	13	3NF-2 Recall multiplication facts, and corresponding division facts, in the 10,5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.
	3	Spring	A	21	
	3	Spring	R2	17	
	3	Summer	A	10	
	3	Summer	R1	10	
	3	Summer	R1	20	
	4	Autumn	A	2	
	4	Autumn	A	4	
	4	Autumn	A	7	
	4	Autumn	A	21	
	4	Autumn	A	25	
	4	Autumn	R1	6	
	4	Autumn	R1	25a	
	4	Autumn	R2	14	
	4	Spring	A	6	
	4	Spring	A	8	
	4	Spring	A	12	
	4	Spring	A	13	
	4	Spring	R2	13	
	4	Summer	A	5	
	4	Summer	A	6	
	4	Summer	A	19	
	4	Summer	R1	9	
	4	Summer	R1	14	
	4	Summer	R2	6	
	5	Spring	R1	11	
	6	Autumn	A	5	
	6	Autumn	A	10	
	6	Spring	A	4	
	6	Spring	R1	10	
	3	Summer	R2	10	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$	$\frac{-1}{3}$	O 0 O D		Prerequisite criteria
4NF-1 cont. Recall multiplication and division facts up to 12 $\times 12$, and recognise products in multiplication tables as multiples of the corresponding number.	4	Spring	R1	11	3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.
	4	Spring	R2	4	
	4	Summer	A	23	
	4	Summer	A	32	
4NF-2 Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders, and interpret remainders appropriately according to the context.	4	Autumn	R2	23a	None
	4	Autumn	R2	23b	
	4	Autumn	R2	25	
	5	Summer	A	31	
	5	Summer	R1	26	
4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)	3	Spring	R1	2	3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).
	3	Spring	R1	8	
	5	Autumn	A	34	
	5	Spring	R2	20b	
	5	Autumn	R2	14	
	5	Summer	R1	18	
4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	3	Spring	R1	19	None
	4	Autumn	A	28	
	4	Spring	A	30a	
	4	Spring	A	30b	
	4	Summer	A	24	
	4	Summer	A	33	
	5	Autumn	A	16	
	5	Autumn	A	36	
4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	4	Autumn	A	10	None
	4	Autumn	R1	3	
	4	Autumn	R2	18	
	4	Spring	R2	4	
	4	Summer	A	9	
	5	Autumn	R1	5	
	5	Autumn	R1	8	
	5	Autumn	R2	14	
	5	Spring	R1	10a	
	5	Spring	R1	10b	
	6	Spring	R2	4	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\xrightarrow{\text { ® }}$	$\frac{-1}{3}$	D O D D	0 \sim 0 0 1	Prerequisite criteria
4MD-2 cont. Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	2	Spring	R	32	None
	4	Autumn	A	27	
	4	Autumn	R1	6	
4MD-3 Understand and apply the distributive property of multiplication.	3	Autumn	A	26	None
	3	Autumn	A	30	
	3	Autumn	R1	9	
	3	Spring	A	28	
	3	Summer	A	14	
	3	Summer	A	22	
	4	Autumn	A	23	
	4	Summer	R2	11	
	6	Autumn	A	32	
	6	Spring	R2	19	
	4	Autumn	A	21	
	5	Autumn	R2	6	
4F-1 Reason about the location of mixed numbers in the linear number system.	3	Summer	R1	13	3F-3 Reason about the location of any fraction within 1 in the linear number system.
	4	Summer	R2	14	
4F-2 Convert mixed numbers to improper fractions and vice versa.	5	Spring	A	33	None
	5	Summer	A	22	
	5	Summer	A	32	
	5	Summer	R2	24	
	6	Autumn	A	16	
	6	Autumn	A	21	
4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	3	Summer	A	23	3F-4 Add and subtract fractions with the same denominator, within 1.
	4	Summer	R1	17	
	5	Autumn	R2	27	
	5	Spring	A	39	
	5	Summer	A	7	
	6	Autumn	R1	21	
	5	Spring	A	33	
	5	Spring	R1	22	
	5	Spring	R1	24	
	5	Summer	R1	25	
	5	Summer	R2	27	
	6	Autumn	A	34	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	¢	$\frac{-1}{3}$	O O O ¢	0 $\stackrel{1}{0}$ 0 \square 1 1	Prerequisite criteria
4F-3 cont. Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	5	Summer	R2	27	3F-4 Add and subtract fractions with the same denominator, within 1.
	6	Autumn	A	34	
	6	Spring	A	21	
	6	Spring	A	28	
	6	Spring	A	33	
4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.	4	Autumn	R1	23	3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides.
	4	Autumn	R2	11a	
	4	Autumn	R2	11b	
	4	Spring	R1	19a	
	4	Spring	R1	19b	
	4	Spring	R2	18b	
	4	Summer	R1	12	
	4	Summer	R2	20	
	5	Autumn	R2	9	
	5	Spring	R1	8	
4G-1 cont. Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.	6	Autumn	R2	11	3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides.
	6	Spring	R1	17	
	5	Summer	R1	19	
4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the sidelengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.	3	Autumn	R1	18	None
	4	Autumn	R2	8	
	4	Spring	R1	3	
	4	Spring	R2	7	
	4	Summer	R2	7	
	5	Spring	R1	3b	
	5	Spring	R2	13b	
	5	Summer	R2	17	
	6	Autumn	R2	6	
	6	Autumn	R2	15	
	6	Spring	R1	23	
	6	Spring	R2	24	
	2	Spring	R	31	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\begin{aligned} & \widehat{\widehat{0}} \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{-1}{3}$	O O O D 1	0 \sim 0 0 0 0 1	Prerequisite criteria
4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry.	4	Autumn	R2	13	None
	4	Spring	R1	4	
	4	Summer	R2	3	
	5	Summer	R1	19	
	6	Autumn	R1	2	
	6	Spring	R1	9	
	4	Spring	R1	9	
	6	Autumn	R2	15	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	® ¢ \sim	$\frac{-1}{3}$	O O O D	0 $\stackrel{\square}{1}$ \sim \square \square 0	Prerequisite criteria
5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1. Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 .	4	Autumn	A	32	4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 .
	4	Spring	A	30a	
	4	Spring	A	30b	
	4	Spring	R1	14	
	4	Summer	A	30	
	4	Summer	R1	25	
	5	Autumn	R1	9	
	5	Spring	A	16	
	5	Spring	A	36	
	4	Autumn	A	34	
5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning.	4	Autumn	R1	19	4NPV-2 Recognise the place value of each digit in fourdigit numbers, and compose and decompose four-digit numbers using standard and nonstandard partitioning.
	4	Autumn	R1	24	
	4	Spring	R1	1	
	4	Spring	R1	20a	
	4	Spring	R1	20b	
	4	Spring	R1	21	
	4	Spring	R2	6	
	4	Summer	R2	19	
	4	Summer	R2	23b	
	5	Spring	R2	23	
	6	Spring	A	18	
	4	Summer	R2	8	
	5	Autumn	R1	2 a	
5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.	3	Summer	A	15	4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.
	3	Summer	R1	16	
	4	Autumn	A	5	
	4	Autumn	A	22	
	4	Autumn	R1	5	
	4	Autumn	R2	1	
	4	Spring	A	3	
	4	Spring	A	20	
	4	Spring	A	28	
	4	Spring	R1	15	
	4	Summer	A	15	
	4	Summer	A	28	
	4	Summer	R1	4	

Ready－to－progress criteria	NFER questions that are aligned to this criterion				
	$\begin{aligned} & \widehat{0} \\ & \stackrel{N}{\sim} \end{aligned}$	$\frac{-1}{3}$	D O O D	0 0 0 0 0 ¢ 0	Prerequisite criteria
5NPV－3 cont． Reason about the location of any number with up to 2 decimals places in the linear number system，including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each．	4	Summer	R1	6	4NPV－3 Reason about the location of any four－digit number in the linear number system，including identifying the previous and next multiple of 1,000 and 100 ，and rounding to the nearest of each．
	4	Summer	R1	8	
	4	Summer	R2	4	
	4	Summer	R2	8	
	4	Summer	R2	24	
	5	Autumn	A	30	
	5	Autumn	R1	3	
	5	Spring	A	25	
	5	Spring	R1	14	
	5	Spring	R2	25	
	5	Summer	A	17	
	5	Summer	A	34	
	5	Summer	R1	22	
	5	Summer	R2	23	
	6	Spring	R1	3	
	6	Spring	R1	24	
	6	Spring	R2	5	
5NPV－4 Divide 1 into 2，4， 5 and 10 equal parts，and read scales／number lines marked in units of 1 with 2,4 ， 5 and 10 equal parts．	5	Autumn	R2	16	4NPV－4 Divide 1，000 into 2，4， 5 and 10 equal parts，and read scales／number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts．
	4	Spring	R1	18	
5NPV－5 Convert between units of measure，including using common decimals and fractions．	3	Autumn	R2	21	None
	4	Autumn	R2	25	
	4	Spring	R1	12	
	4	Spring	R1	18	
	4	Spring	R2	11	
	4	Summer	R2	$23 a$	
	5	Autumn	R1	2a	
	5	Autumn	R1	20	
	5	Summer	R1	10	
	5	Summer	R1	18	
	6	Autumn	R2	19	
	6	Spring	R1	15	
	6	Spring	R2	17	
	3	Spring	R1	20	
	4	Spring	R1	1	
	5	Spring	R2	7	
	6	Spring	R2	24	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	¢ Q \sim	$\frac{-1}{3}$	0 0 0 O D	0 $\frac{C}{D}$ \sim \square \square 0	Prerequisite criteria
5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.	4	Autumn	A	20	4NF-1 Recall multiplication and division facts up to 12×12, and recognise products in multiplication tables as multiples of the corresponding number.
	5	Autumn	A	4	
	5	Autumn	R1	10	
	5	Autumn	R1	19	
	5	Autumn	R2	3	
	5	Spring	A	7	
	5	Autumn	A	13	
	5	Autumn	A	27	
	5	Autumn	A	34	
	5	Spring	R1	10b	
	6	Autumn	A	5	
5NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth).	4	Autumn	R1	10	4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)
	6	Autumn	A	25	
	5	Autumn	R1	8	
	5	Spring	R1	21	
	6	Spring	A	26	
5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.	4	Autumn	A	28	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.
	4	Summer	A	24	
	4	Summer	A	33	
	4	Summer	R1	20	
	5	Autumn	A	16	
	5	Autumn	A	26	
	5	Spring	A	11	
	6	Autumn	A	13	
	6	Autumn	A	18	
	6	Autumn	A	33	
	6	Spring	A	19	
	6	Spring	A	23	
	6	Spring	R2	9	
	4	Autumn	A	32	
	5	Summer	A	10	
5MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.	4	Autumn	R2	16	None
	4	Summer	A	23	
	4	Summer	A	32	
	5	Autumn	A	10	
	5	Autumn	A	13	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	¢	$\frac{-1}{3}$	O O O D	0 0 0 0 0 1	Prerequisite criteria
5MD-2 cont. Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.	5	Autumn	A	18	None
	5	Autumn	A	27	
	5	Autumn	A	32	
	5	Autumn	A	38	
	5	Autumn	R2	29	
	5	Spring	A	14	
	5	Spring	A	18	
	5	Spring	A	24	
	5	Spring	A	28	
5MD-2 cont. Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.	5	Spring	A	32	None
	5	Spring	R1	25	
	5	Spring	R2	10	
	5	Summer	A	16a	
	5	Summer	A	19a	
	5	Summer	A	19b	
	5	Summer	A	30	
	5	Summer	A	33	
	5	Summer	A	37	
	5	Summer	R1	3 a	
	5	Summer	R1	3b	
	5	Summer	R1	9	
	5	Summer	R1	29	
	5	Summer	R2	12	
	5	Summer	R2	18	
	6	Autumn	A	17	
	6	Autumn	R2	1	
	6	Autumn	R2	20	
	6	Spring	R2	22	
	4	Spring	R2	15	
	5	Autumn	R1	19	
5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method.	4	Autumn	A	33	4MD-3 Understand and apply the distributive property of multiplication.
	4	Spring	A	15	
	4	Spring	A	21	
	4	Spring	A	31	
	4	Summer	A	16	
	4	Summer	A	26	

NFER questions that are aligned to this criterion					
				0	

Ready－to－progress criteria	NFER questions that are aligned to this criterion				
	¢	$\frac{-1}{3}$	O O O D		Prerequisite criteria
5F－1 Find non－unit fractions of quantities．	4	Autumn	R2	26	3F－2 Find unit fractions of quantities using known division facts（multiplication tables fluency）．
	4	Spring	A	32	
	4	Spring	R1	6	
	4	Spring	R2	22b	
	4	Summer	R2	16	
	6	Autumn	R2	21	
	3	Spring	R2	11	
	3	Spring	A	23	
5F－2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system．	3	Spring	R2	15	None
	3	Summer	R2	19	
	4	Autumn	R1	8	
	4	Autumn	R1	26	
	4	Autumn	R2	15b	
	4	Summer	R1	22	
	4	Summer	R2	25	
	5	Autumn	A	24	
	5	Autumn	A	29	
	5	Autumn	R1	6	
	5	Spring	A	26	
	5	Spring	R1	9	
	5	Spring	R1	13	
	5	Spring	R1	15	
	5	Spring	R1	20	
	5	Spring	R1	22	
	5	Spring	R2	6	
	5	Summer	A	36	
	5	Summer	R1	16	
	5	Summer	R1	25	
	5	Summer	R2	27	
	6	Autumn	A	19	
	6	Autumn	A	34	
	6	Autumn	R1	7	
	6	Spring	A	9	
	6	Spring	A	21	
	6	Spring	A	28	
	6	Spring	A	33	
	6	Spring	R1	20	
	4	Autumn	R2	17	

	NFER questions that are aligned to this criterion			
				0

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	® ¢ \sim	$\frac{-1}{3}$	O O O D		Prerequisite criteria
6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number $10,100,1,000,1$ tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10, 100 and 1,000).	5	Autumn	A	19	5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1 . Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 .
	5	Autumn	A	36	
	5	Summer	A	28	
	5	Summer	R2	16	
	6	Autumn	A	22	
	6	Autumn	A	28	
	6	Autumn	R2	5	
	6	Spring	A	14	
6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning.	4	Autumn	A	18	5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning.
	4	Autumn	A	24	
	4	Spring	A	9	
	4	Spring	A	19	
	4	Spring	R2	15	
	4	Summer	A	14	
	4	Summer	A	20	
	4	Summer	R2	13	
	5	Autumn	A	14	
	5	Autumn	R2	15	
	5	Spring	A	1	
	5	Spring	A	4	
	5	Spring	A	8	
	5	Spring	A	15	
	5	Spring	A	20	
	5	Summer	A	5	
	5	Summer	A	6	
	5	Summer	A	13	
	5	Summer	R1	20	
	5	Summer	R2	5	
	5	Summer	R2	7 a	
	5	Summer	R2	7b	
	6	Autumn	A	12	
6NPV-2 cont. Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning.	6	Autumn	R1	3	5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning.
	6	Spring	A	11	
	6	Spring	R1	6	
	6	Spring	R2	3	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	$\xrightarrow{\widehat{0}}$	$\frac{-1}{3}$	O O D D	0 \sim \sim 0 \sim	Prerequisite criteria
6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.	4	Autumn	A	29	5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.
	4	Spring	A	7	
	4	Spring	A	14	
	5	Autumn	A	2	
	5	Autumn	R2	19	
	5	Autumn	R2	23	
	5	Spring	A	19	
	5	Spring	A	30	
	5	Spring	A	34	
	5	Spring	R1	18	
	5	Spring	R2	1	
	5	Summer	A	2	
	5	Summer	A	23	
	5	Summer	A	25	
	5	Summer	R1	2	
	5	Summer	R1	5	
	5	Summer	R1	15	
	5	Summer	R2	3	
	5	Summer	R2	14b	
	6	Autumn	R1	6 a	
	6	Autumn	R1	6b	
	6	Spring	R1	4	
	6	Spring	R1	22	
	6	Spring	R2	15	
	5	Summer	A	5	
6NPV-4 Divide powers of 10 , from 1 hundredth to 10 million, into 2, 4, 5 and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts.	5	Spring	R2	16	5NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of 1 with 2,4 , 5 and 10 equal parts.
	5	Autumn	R2	4	
	5	Summer	R1	10	
6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).	4	Autumn	R2	22	None
	4	Spring	R1	5	
	4	Summer	A	12	
	5	Autumn	A	33	
	5	Autumn	R1	21	
	5	Autumn	R2	1	
	5	Autumn	R2	8	

Ready－to－progress criteria	NFER questions that are aligned to this criterion				
	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\sim}}$	$\frac{-1}{3}$	O O O D		Prerequisite criteria
6AS／MD－1 cont． Understand that 2 numbers can be related additively or multiplicatively，and quantify additive and multiplicative relationships （multiplicative relationships restricted to multiplication by a whole number）．	5	Autumn	R2	26	None
	5	Spring	R1	24	
	5	Spring	R1	26	
	5	Spring	R2	15	
	5	Summer	A	10	
	5	Summer	R1	17	
	6	Autumn	A	20	
	6	Autumn	A	27	
	6	Autumn	A	29	
	6	Autumn	A	35	
	6	Autumn	R1	4	
	6	Autumn	R1	10	
	6	Autumn	R2	16	
	6	Autumn	R2	24a	
	6	Autumn	R2	24b	
	6	Spring	R2	7	
	6	Spring	R2	16	
	4	Spring	R1	12	
	4	Spring	R1	21	
	6	Autumn	R1	17	
6AS／MD－2 Use a given additive or multiplicative calculation to derive or complete a related calculation，using arithmetic properties，inverse relationships，and place－value understanding．	5	Autumn	R2	24	None
	5	Spring	R2	8	
	6	Autumn	R1	4	
	6	Autumn	R1	18	
	6	Autumn	R2	14	
6AS／MD－3 Solve problems involving ratio relationships．	4	Spring	R1	22	None
	4	Spring	R2	5	
	4	Spring	R2	12	
	5	Autumn	R1	16	
	5	Spring	R1	24	
	5	Spring	R2	15	
	5	Summer	R2	8	
	6	Autumn	R1	10	
	6	Autumn	R1	19	
	6	Autumn	R1	22	
	6	Autumn	R2	8	
	6	Autumn	R2	23	
	6	Autumn	R1	17	
6AS／MD－4 Solve problems with 2 unknowns．	6	Autumn	R2	3	None
	6	Spring	R2	1	

Ready-to-progress criteria	NFER questions that are aligned to this criterion				
	¢	$\frac{-1}{3}$	O O O D	0 \sim \sim 0 \sim 0 1	Prerequisite criteria
6F-1 Recognise when fractions can be simplified, and use common factors to simplify fractions.	5	Summer	A	27	None
	5	Spring	A	21	
	5	Spring	A	23	
6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	5	Autumn	A	20	None
	5	Spring	A	12	
	5	Spring	A	21	
	5	Summer	A	29	
	5	Summer	R1	12	
	6	Autumn	R2	17	
6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy.	5	Autumn	R1	23	None
	5	Spring	R2	11	
	5	Summer	R1	27	
6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems.	5	Autumn	R1	14	None
	5	Spring	R1	12	
	5	Spring	R2	13a	
	5	Summer	R2	11a	
	5	Summer	R2	11b	
	5	Summer	R2	26a	
	5	Summer	R2	26b	
	6	Spring	R2	8	

$\because N F E R$

Classroom

[^0]: ${ }^{1}$ Department for Education and the National Centre for Excellence in the Teaching of Mathematics (2020). Mathematics guidance: key stages 1 and 2 Non-statutory guidance for the national curriculum in England [online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/1017683/Maths guidance KS 1 and 2.pdf [16 September, 2022]

